TMDXEVM6670L EVM Technical Reference Manual Version 2.0

Literature Number: SPRUH59

Revised July 2011

Document Copyright

Publication Title:

TMDXEVM6670L Technical Reference Manual All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under copyright laws.

EVALUATION BOARD / KIT / MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMER

Not for Diagnostic Use: For Feasibility Evaluation Only in Laboratory/Development Environments

The EVM may not be used for diagnostic purposes.

This EVM is intended solely for evaluation and development purposes. It is not intended for use and may not be used as all, or part of an end equipment product.

This EVM should be used solely by qualified engineers and technicians who are familiar with the risks associated with handling electrical and mechanical components, systems and subsystems.

Your Obligations and Responsibilities

Please consult the EVM documentation, including but not limited to any user guides, setup guides or getting started guides, and other warnings prior to using the EVM. Any use of the EVM outside of the specified operating range may cause danger to users and/or produce unintended results, inaccurate operation, and permanent damage to the EVM and associated electronics. You acknowledge and agree that:

You are responsible for compliance with all applicable Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, UL, CSA, VDE, CE, RoHS and WEEE,) that relate to your use (and that of your employees, contractors or designees) of the EVM for evaluation, testing and other purposes.

You are responsible for the safety of you and your employees and contractors when using or handling the EVM. Further, you are responsible for ensuring that any contacts or interfaces between the EVM and any human body are designed to be safe and to avoid the risk of electrical shock.

You will defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of, or in connection with any use of the EVM that is not in accordance with the terms of this agreement. This obligation shall apply whether Claims arise under the law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Warning

The EVM board may get very hot during use. Specifically, the DSP, its heat sink and power supply circuits all heat up during operation. This will not harm the EVM. Use care when touching the unit when operating or allow it to cool after use before handling. If unit is operated in an environment that limits free air flow, a fan may be needed.

Preface

About this Document

This document is a Technical Reference Manual for the TMS320C6670 Evaluation Module (TMDXEVM6670) designed and developed by Advantech Limited for Texas Instruments, Inc.

Notational Conventions

This document uses the following conventions:

Program listings, program examples, and interactive displays are shown in a mono spaced font. Examples use bold for emphasis, and interactive displays use bold to distinguish commands that you enter from items that the system displays (such as prompts, command output, error messages, etc.).

Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify the information within the brackets. Unless the square brackets are in a bold typeface, do not enter the brackets themselves.

<u>Underlined, italicized non-bold</u> text in a command is used to mark place holder text that should be replaced by the appropriate value for the user's configuration.

Trademarks

The Texas Instruments logo and Texas Instruments are registered trademarks of Texas Instruments. Trademarks of Texas Instruments include: TI, XDS, Code Composer, Code Composer Studio, Probe Point, Code Explorer, DSP / BIOS, RTDX, Online DSP Lab, TMS320, TMS320C54x, TMS320C55x, TMS320C62x, TMS320C64x, TMS320C67x, TMS320C5000, and TMS320C6000.

MS-DOS, Windows, Windows XP, and Windows NT are trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and other countries.

All other brand, product names, and service names are trademarks or registered trademarks of their respective companies or organizations.

Document Revision History

Release	Chapter	Description of Change	
1.0	All	First Release for Beta1 and Beta2 EVMs	
2.0	All	Second Release for production	

Acronyms

Acronym	Description	
AMC or AdvancedMC	Advanced Mezzanine Card	
AIF2	Antenna Interface 2	
CCS	Code Composer Studio	
DDR3	Double Data Rate 3 Interface	
DSP	Digital Signal Processor	
DTE	Data Terminal Equipment	
EEPROM	Electrically Erasable Programmable Read Only Memory	
EMAC	Ethernet Media Access Controller	
EMIF	External Memory Interface	
EVM	Evaluation Module	
FPGA	Field Programmable Gate Array	
I2C	Inter Integrated Circuit	
IPMB	Intelligent Platform Management Bus	
IPMI	Intelligent Platform Management Interface	
JTAG	Joint Test Action Group	
LED	Light Emitting Diode	
MCH	MicroTCA Carrier Hub	
MTCA or <i>Micro</i> TCA	Micro Telecommunication Computing Architecture	
MMC	Module Management Controller	
PICMG®	PCI Industrial Computer Manufacturers Group	
RFU	Reserved for Future Use	
SDRAM	Synchronous Dynamic Random Access Memory	
SERDES	Serializer-Deserializer	
SGMII	Serial Gigabit Media Independent Interface	
SRIO	Serial RapidIO	
UART	Universal Asynchronous Receiver/Transmitter	
USB	Universal Serial Bus	
XDS560v2	Texas Instruments' System Trace Emulator	

Table of Contents

1. O\	/erview	.11
	1.1 Key Features	.11
	1.2 Functional Overview	.12
	1.3 Basic Operation	.12
	1.4 Boot Mode and Boot Configuration Switch Setting	. 13
	1.5 Power Supply	.14
2. In	troduction to the TMDXEVM6670L board	.15
	2.1 Memory Map	.15
	2.2 EVM Boot Mode and Boot Configuration Switch Settings	.18
	2.3 JTAG - Emulation Overview	.19
	2.4 Clock Domains	.20
	2.5 Non-Volatile Memories (SEPROM / SPI NOR Flash / NAND flash)	.20
	2.6 FPGA Functions	.21
	2.7 Gigabit Ethernet Connections	.22
	2.8 Serial RapidIO (SRIO) Interface	.23
	2.9 DDR3 External Memory Interface	.23
	2.10 HyperLink interface	
	2.11 PCI express interface	.25
	2.12 Antenna Interface (AIF2)	.25
	2.13 UART Interface	.26
	2.14 Module Management Controller (MMC) for IPMI	.26
	2.15 Expansion Headers	
3. TN	ADXEVM6670L Board Physical Specifications	.28
	3.1 Board Layout	.28
	3.2 Connector Index	.29
	3.2.1 560V2_PWR1, XDS560v2 Mezzanine Power Connector	.29
	3.2.2 AMC1, AMC Edge Connector	.30
	3.2.3 COM1, UART 3-Pin Connector	.32
	3.2.4 COM_SEL1, UART Route Select Connector	.32
	3.2.5 DC_IN1, DC Power Input Jack Connector	
	3.2.6 EMU1, TI 60-Pin DSP JTAG Connector	
	3.2.7 FAN1, FAN Connector	.34
	3.2.8 HyperLink1, HyperLink Connector	
	3.2.9 LAN1, Ethernet Connector	
	3.2.10 PMBUS1, PMBUS Connector for Smart-Reflex Control	.36

	3.2.11 TAP_FPGA1, FPGA JTAG Connector (For Factory Use Only)	37
	3.2.12 SBW_MMC1, MSP430 JTAG Connector (For Factory Use Only)	
	3.2.13 TEST_PH1, Expansion Header (SPI, GPIO, Timer I/O, I ² C, and UART)	
	3.2.14 USB1, Mini-USB Connector	39
	3.3 DIP and Pushbutton Switches	40
	3.3.1 RST_FULL1, Full Reset	40
	3.3.2 RST_COLD1, Cold Reset	
	3.3.3 RST_WARM1, Warm Reset	
	3.3.4 SW3, SW4, SW5 and SW6 DSP Boot Configurations	40
	3.3.5 SW9, DSP PCIE Enable / User Defined and DSP_DSPCLKSEL /	42
	FPGA_PACLKSEL Switch Configuration	
	3.4 Test Points	43
	3.5 System LEDs	44
4. 9	System Power Requirements	46
	4.1 Power Requirements	46
	4.2 Power Supply Distribution	48
	4.3 The Power Supply Boot Sequence	53
5. ⁻	TMDXEVM6670L FPGA FUNCTIONAL DESCRIPTION	
	5.1 FPGA overview	57
	5.2 FPGA signals description	58
	5.3 Sequence of operation	64
	5.3.1 Power-on Sequence	64
	5.3.2 Power Off Sequence	
	5.3.3 Boot Configuration Timing	
	5.3.4 Boot Configuration Forced in I2C Boot	66
	5.4 Reset definition	67
	5.4.1 Reset Behavior	
	5.4.2 Reset Switches and Triggers	67
	5.5 SPI protocol	68
	5.5.1 FPGA-DSP SPI Protocol	
	5.5.2 FPGA- CDCE62005(Clock Generator) SPI Protocol	70
	5.6 FPGA Configuration Registers	70
	5.6.1 FPGA Configuration Registers Summary	71
	5.6.2 FPGA Configuration Registers Descriptions	72

List of Figures

Figure 1.1: Block Diagram of TMDXEVM6670L EVM	12
Figure 1.2: TMDXEVM6670L EVM Layout	13
Figure 2.1: TMDXEVM6670L EVM JTAG emulation	19
Figure 2.2: TMDXEVM6670L EVM Clock Domains	20
Figure 2.3: TMDXEVM6670L EVM NAND flash connections	21
Figure 2.4: TMDXEVM6670L EVM FPGA Connections	22
Figure 2.5: TMDXEVM6670L EVM Ethernet Routing	22
Figure 2.6: TMDXEVM6670L EVM SRIO Port Connections	23
Figure 2.7: TMDXEVM6670L EVM SDRAM	24
Figure 2.8: TMDXEVM6670L EVM HyperLink connections	24
Figure 2.9: TMDXEVM6670L EVM PCIE Port Connections	25
Figure 2.10: TMDXEVM6670L EVM AIF Port Connections	25
Figure 2.11: TMDXEVM6670L EVM UART Connections	26
Figure 2.12: TMDXEVM6670L EVM MMC Connections for IPMI	27
Figure 3.1: TMDXEVM6670L EVM Board Assembly Layout – TOP view	28
Figure 3.2: TMDXEVM6670L EVM Board layout – Bottom view	29
Figure 3.3: COM_SEL1 Jumper setting	33
Figure 3.4: The HyperLink Connector	35
Figure 3.5: TAP_FPGA1 function diagram	37
Figure 3.6: SW3, SW4, SW5, and SW6 default settings	41
Figure 3.7: SW9 default settings	42
Figure 3.8: TMDXEVM6670L test points on top side	43
Figure 3.9: TMDXEVM6670L test points on the bottom side	43
Figure 3.10: TMDXEVM6670L EVM Board LEDs	45
Figure 4.1: All the AMC power supply on TMDXEVM6670L EVM	49
Figure 4.2: The CVDD and VCC1V0 (CVDD1) power design on TMDXEVM6670L EVM	50
Figure 4.3: The VCC3_AUX power design on TMDXEVM6670L EVM	51
Figure 4.4: The VCC1V5 power design on TMDXEVM6670L EVM	51
Figure 4.5: The VCC5 power design on TMDXEVM6670L EVM	52
Figure 4.6: Initial Power-on Sequence Timing Diagram	55
Figure 4.7: Power Down Sequence Timing Diagram	56
Figure: 5-1 Power-on Reset Boot Configuration Timing	66
Figure: 5-2 Reset-Full Switch/Trigger Boot Configuration Timing	66
Figure 5-3: The SPI access form the TMS320C6670 to the FPGA (WRITE / high level)	69
Figure 5-4: The SPI access form the TMS320C6670 to the FPGA (WRITE)	69
Figure 5-5: The SPI access form the TMS320C6670 to the FPGA (READ / high level)	69

Figure 5-6: The SPI access form the TMS320C6670 to the FPGA (READ)	70
Figure 5-7: The SPI access form the FPGA to the CDCE62005 (WRITE)	70
Figure 5-8: The SPI access form the FPGA to the CDCE62005 (READ)	70

List of Tables

Table 2.1: TMS320C6670 Memory Map	16
Table 2.2: TMDXEVM6670L EVM NAND flash connections	21
Table 3.1: TMDXEVM6670L EVM Board Connectors	29
Table 3.2: XDS560v2 Power Connector pin out	30
Table 3.3: AMC Edge Connector	30
Table 3.4: UART Connector pin out	32
Table 3.5: UART Path Select Connector pin out	33
Table 3.6: TI 60-pin DSP JTAG Connector pin out	34
Table 3.7: FAN1 Connector pin out	35
Table 3.8: The HyperLink Connector	35
Table 3.9: Ethernet Connector pin out	36
Table 3.10: PMBUS1 Pin out	36
Table 3.11: FPGA JTAG Connector pin out	37
Table 3.12: MSP430 JTAG Connector pin out	38
Table 3.13: TEST_PH1, The Expansion Header pin out	38
Table 3.14: Mini-USB Connector pin out	39
Table 3.15: TMDXEVM6670L EVM Board Switches	40
Table 3.16: SW3-SW6, DSP Configuration Switch	41
Table 3.17: SW9, DSP PCIESSEN and User Switch /DSPCLKSEL/PACLKSEL	42
Table 3.18: TMDXEVM6670L EVM Board Test Points	44
Table 3.19: TMDXEVM6670L EVM Board LEDs	45
Table 4.1: EVM Voltage Table	47
Table 4.2: Each Current Requirements on each device of EVM board	48
Table 4.3: The power-up and down timing on the TMDXEVM6670L	54
Table 5.1: TMDXEVM6670L EVM FPGA Pin Description	58
Table 5.2: TMDXEVM6670L EVM FPGA Memory Map	71
Table 5.3: FPGA Configuration Registers Summary	71

1. Overview

This chapter provides an overview of the TMDXEVM6670L along with the key features and block diagram.

- 1.1 Key Features
- 1.2 Functional Overview
- 1.3 Basic Operation
- 1.4 Configuration Switch Settings
- 1.5 Power Supply

1.1 Key Features

The TMDXEVM6670L is a high-performance, cost-efficient, standalone development platform that enables users to evaluate and develop applications for the Texas Instruments TMS320C6670 Digital Signal Processor (DSP). The Evaluation Module (EVM) also serves as a hardware reference design platform for the TMS320C6670 DSP. The EVM's form-factor is equivalent to a single-wide PICMG® AMC.0 R2.0 AdvancedMC module.

Schematics, code examples, and application notes are available to ease the hardware development process and to reduce the time to market.

The key features of the TMDXEVM6670L EVM are:

- Texas Instruments multicore DSP TMS320C6670
- 512 Mbytes of DDR3-1333 memory
- 64 Mbytes of NAND Flash
- 16MB SPI NOR FLASH
- Two Gigabit Ethernet ports supporting 10/100/1000 Mbps data-rate one on AMC connector and one RJ-45 connector
- 170-pin B+ style AMC interface
- High Performance connector for the HyperLink interface
- 128K-byte I2C EEPROM for booting
- 2 User LEDs, 5 Banks of DIP Switches and 4 Software-controlled LEDs
- RS232 Serial interface on 3-pin header or UART over mini-USB connector
- Timer, SPI, GPIO and UART signals on the 80-pin expansion header
- Onboard XDS100 type emulation using high-speed USB 2.0 interface

- TI 60-Pin JTAG header to support all external emulator types
- Optional XDS560v2 System Trace Emulation Mezzanine Card
- Module Management Controller (MMC) for Intelligent Platform Management Interface (IPMI)
- Powered by DC power-brick adaptor (12 V/3.0 A) or AMC carrier backplane
- PICMG® AMC.0 R2.0 single width, full height AdvancedMC module

1.2 Functional Overview

The TMS320C6670 Communications Infrastructure KeyStone SoC is a member of the C66xx SoC family based on TI's new KeyStone Multicore SoC Architecture designed specifically for high-performance wireless infrastructure applications. The TMS320C6670 provides a very high performance macro basestation platform for developing all wireless standards including WCDMA/HSPA/HSPA+, TD-SCDMA, GSM, TDD-LTE, FDD-LTE, and WiMAX. The C6670 also sets a new standard for clock speed with operating frequencies up to 1.2 GHz.

TI's SoC architecture provides a programmable platform integrating various subsystems (C66x cores, IP network, radio layers 1 and 2, and transport processing) and uses a queue-based communication system that allows the SoC resources to operate efficiently and seamlessly. This unique SoC architecture also includes a TeraNet Switch that enables the wide mix of system elements, from programmable cores to dedicated coprocessors and high-speed IO, to operate at maximum efficiency with no blocking or stalling.

The functional block diagram of TMDXEVM6670L is shown in the figure below:

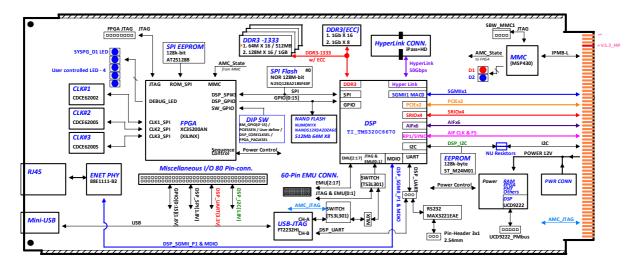


Figure 1.1: Block Diagram of TMDXEVM6670L EVM

1.3 Basic Operation

The TMDXEVM6670L platform is designed to work with TI's Code Composer Studio (CCS) development environment and ships with a version specifically tailored for this board. CCS can interface with the board via onboard emulation circuitry using the USB cable supplied

with this EVM or through an external emulator.

The EVM comes with the Texas Instruments Multicore Software Development Kit (MCSDK) for SYS/BIOS OS. The BIOS MCSDK provides the core foundational building blocks that facilitate application software development on TI's high performance and multicore DSPs. The MCSDK also includes an out-of-box demonstration; see the "MCSDK Getting Started Guide".

To start operating the board, follow instructions in the Quick Start Guide. This guide provides instruction for proper connections and configuration for running the POST and OOB Demos. After completing the POST and OOB Demos, proceed with installing CCS and the EVM support files by following the instructions on the DVD. This process will install all the necessary development tools, drivers and documentation.

After the installation has completed, follow the steps below to run Code Composer Studio.

- 1. Power-on the board using the power brick adaptor (12 V/3.0 A) supplied with this EVM or insert this EVM board into a MicroTCA chassis or AMC carrier backplane.
- 2. Connect the USB cable from host PC to the EVM board.
- 3. Launch Code Composer Studio from the host PC by double clicking on its icon on the PC desktop.

Detailed information about the EVM including examples and reference materials are available in the DVD included with this EVM kit.

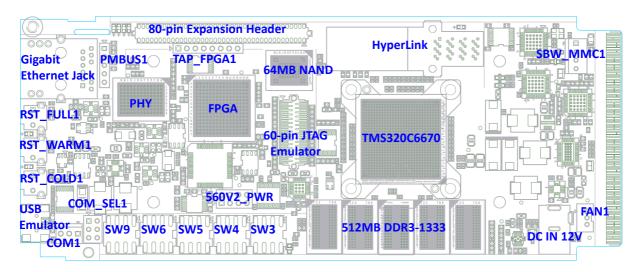


Figure 1.2: TMDXEVM6670L EVM Layout

1.4 Boot Mode and Boot Configuration Switch Setting

The TMDXEVM6670L has 20 sliding DIP switches (Board Ref. SW3 to SW6 and SW9) to determine boot mode, boot configuration, device number, endian mode, CorePac PLL clock selection, and PCIe Mode selection options at the POR stage of the DSP.

1.5 Power Supply

The TMDXEVM6670L can be powered from a single +12V / 3.0A DC (36W) external power supply connected to the DC power jack (DC_IN1). Internally, +12-V input is converted into required voltage levels using local DC-DC converters.

- CVDD (+0.70 V~+1.10 V) is used for the DSP core logic
- +1.0 V is used for internal memory and HyperLink / SRIO / SGMII / PCIe / AIF2 termination of DSP
- +1.5 V is used for DDR3 of DSP, Supplying HyperLink / SRIO / SGMII / PCIe / AIF2 regulators in DSP and RAM chips
- +1.8 V is used for DSP PLLs, DSP LVCMOS I/Os, FPGA I/Os driving the DSP
- +2.5 V is used for the Gigabit Ethernet PHY core
- +1.2 V is used for FPGA core and Gigabit Ethernet PHY core
- +3.3 V is used for the FPGA I/Os
- +5 V and +3.3 V is used to power the XDS560v2 mezzanine card
- The DC power jack connector is a 2.5mm barrel-type plug with positive polarity on the center tip

The TMDXEVM6670L can also draw power from the AMC edge connector (AMC1). If the board is inserted into a PICMG® MicroTCA.0 R1.0-compliant system chassis or AMC Carrier backplane, an external +12 V supply from DC jack (DC_IN1) is not required.

2. Introduction to the TMDXEVM6670L board

This chapter provides an introduction and details of interfaces for the TMDXEVM6670L board. It contains:

- 2.1 Memory Map
- 2.2 EVM Boot mode and Boot configuration switch settings
- 2.3 JTAG Emulation Overview
- 2.4 Clock Domains
- 2.5 None-Volatile Memories (I²C EEPROM / SPI NOR Flash / NAND flash)
- 2.6 FPGA Functions
- 2.7 Gigabit Ethernet Connections
- 2.8 Serial RapidIO (SRIO) Interface
- 2.9 DDR3 External Memory Interface
- 2.10 HyperLink Interface
- 2.11 PCI express interface
- 2.12 Antenna Interface (AIF2)
- 2.13 UART Interfaces
- 2.14 Module Management Controller for IPMI
- 2.15 Expansion Headers

2.1 Memory Map

The memory map of the TMS320C6670 device is as shown in Table 2.1. The external memory configuration register address ranges in the TMS320C6670 device begin at the hex address location 0x8000 0000 for the DDR3 Memory Controller.

Table 2.1: TMS320C6670 Memory Map

Logical 32 bit Address		Physical 36 bit Address		Dutas	Description
Start	End	Start	End	Bytes	Description
0080 0000	008F FFFF	0 0080 0000	0 008F FFFF	1M	L2 SRAM
00E0 0000	00E0 7FFF	0 00E00000	0 00E0 7FFF	32K	L1P SRAM
00F0 0000	00F0 7FFF	0 00F00000	0 00F0 7FFF	32K	L1D SRAM
0100 0000	01BF FFFF	0 0100 0000	0 01BF FFFF	12 M	C66x CorePac Registers
01D0 0000	01D0 007F	0 01D0 0000	0 01D0 007F	128	Tracer 0
01D0 8000	01D0 807F	0 01D0 8000	0 01D0 807F	128	Tracer 1
01D1 0000	01D1 007F	0 01D1 0000	0 01D1 007F	128	Tracer 2
01D1 8000	01D1 807F	0 01D1 8000	0 01D1 807F	128	Tracer 3
01D2 0000	01D2 007F	0 01D2 0000	0 01D2 007F	128	Tracer 4
01D2 8000	01D2 807F	0 01D2 8000	0 01D2 807F	128	Tracer 5
01D3 0000	01D3 007F	0 01D3 0000	0 01D3 007F	128	Tracer 6
01D3 8000	01D3 807F	0 01D3 8000	0 01D3 807F	128	Tracer 7
01D4 0000	01D4 007F	0 01D4 0000	0 01D4 007F	128	Tracer 8
01D4 8000	01D4 807F	0 01D4 8000	0 01D4 807F	128	Tracer 9
01D5 0000	01D5 007F	0 01D5 0000	0 01D5 007F	128	Tracer 10
01D5 8000	01D5 807F	0 01D5 8000	0 01D5 807F	128	Tracer 11
01D6 0000	01D6 007F	0 01D6 0000	0 01D6 007F	128	Tracer 12
01D6 8000	01D6 807F	0 01D6 8000	0 01D6 807F	128	Tracer 13
01D7 0000	01D7 007F	0 01D7 0000	0 01D7 007F	128	Tracer 14
01D7 8000	01D7 807F	0 01D7 8000	0 01D7 807F	128	Tracer 15
01F0 0000	01F7 FFFF	0 01F0 0000	0 01F7 FFFF	512k	AIF2 Control
					Packet Accelerator
0200 0000	0208 FFFF	0 0200 0000	0 0208 FFFF	576K	Configuration
					Ethernet Switch Subsystem
0209 0000	020B FFFF	0 0209 0000	0 020B FFFF	192K	Configuration
					Security Accelerator
020C 0000	020F FFFF	0 020C 0000	0 020F FFFF	256K	Subsystem Configuration
021C 0000	021C 03FF	0 021C 0000	0 021C 03FF	1K	TCP3d-A
021C 8000	021C 83FF	0 021C 8000	0 021C 83FF	1K	TCP3d-B
021D 0000	021D 00FF	0 021D 0000	0 021D 00FF	256	VCP2 A
021D 4000	021D 40FF	0 021D 4000	0 021D 40FF	256	VCP2 B
021D 8000	021D 80FF	0 021D 8000	0 021D 80FF	256	VCP2 C
021D C000	021D COFF	0 021D C000	0 021D C0FF	256	VCP2 D
021E 0000	021E OFFF	0 021E 0000	0 021E 0FFF	4K	TCP3e
021F 0000	021F 07FF	0 021F 0000	0 021F 07FF	2K	FFTC-A Configuration
021F 4000	021F 47FF	0 021F 4000	0 021F 47FF	2K	FFTC-B Configuration
0220 0000	0220 007F	0 0220 0000	0 0220 007F	128	Timer0
0221 0000	0221 007F	0 0221 0000	0 0221 007F	128	Timer1
0222 0000	0222 007F	0 0222 0000	0 0222 007F	128	Timer2
0223 0000	0223 007F	0 0223 0000	0 0223 007F	128	Timer3
0224 0000	0224 007F	0 0224 0000	0 0224 007F	128	Timer4
0225 0000	0225 007F	0 0225 0000	0 0225 007F	128	Timer5
0226 0000	0226 007F	0 0226 0000	0 0226 007F	128	Timer6
0227 0000	0227 007F	0 0227 0000	0 0227 007F	128	Timer7
0231 0000	0227 0071 0231 01FF	0 0227 0000	0 0227 0071 0 0231 01FF	512	PLL Controller
0231 0000	0231 01FF 0232 00FF	0 0231 0000	0 0231 01FF	256	GPIO
0232 0000	0232 00FF 0233 03FF	0 0232 0000	0 0232 00FF 0 0233 03FF	1K	SmartReflex
0235 0000		0 0235 0000	0 0235 05FF 0 0235 0FFF	4K	Power Sleep Controller
0233 0000	0235 0FFF	0 0233 0000	U UZ33 UFFF	41	
0236 0000	0236 03FF	0 0236 0000	0 0236 03FF	1K	Memory Protection Unit (MPU) 0

0236 8000	0236 83FF	0 0236 8000	0 0236 83FF	1K	Memory Protection Unit (MPU) 1
0237 0000	0237 03FF	0 0237 0000	0 0237 03FF	1K	Memory Protection Unit (MPU) 2
0237 8000	0237 83FF	0 0237 8000	0 0237 83FF	1K	Memory Protection Unit (MPU) 3
0244 0000	0244 3FFF	0 0244 0000	0 0244 3FFF	16K	DSP Trace Formatter 0
0245 0000	0245 3FFF	0 0245 0000	0 0245 3FFF	16K	DSP Trace Formatter 1
0246 0000	0246 3FFF	0 0246 0000	0 0246 3FFF	16K	DSP Trace Formatter 2
0247 0000	0247 3FFF	0 0247 0000	0 0247 3FFF	16K	DSP Trace Formatter 3
0253 0000	0253 007F	0 0253 0000	0 0253 007F	128	I2C Data & Control
0254 0000	0254 003F	0 0254 0000	0 0254 003F	64	UART
0260 0000	0260 1FFF	0 0260 0000	0 0260 1FFF	8K	Secondary Interrupt Contoller (INTC) 0
0260 4000	0260 5FFF	0 0260 4000	0 0260 5FFF	8K	Secondary Interrupt Contoller (INTC) 1
0260 8000	0260 9FFF	0 0260 8000	0 0260 9FFF	8K	Secondary Interrupt Contoller (INTC) 2
0262 0000	0262 03FF	0 0262 0000	0 0262 03FF	1K	Chip-Level Registers
0264 0000	0264 07FF	0 0264 0000	0 0264 07FF	2K	Semaphore
0270 0000	0270 7FFF	0 0270 0000	0 0270 7FFF	32K	EDMA Channel Controller (TPCC) 0
0272 0000	0272 7FFF	0 0272 0000	0 0272 7FFF	32K	EDMA Channel Controller (TPCC) 1
02740000	0274 7FFF	0 02740000	0 0274 7FFF	32K	EDMA Channel Controller (TPCC) 2
0276 0000	0276 03FF	0 0276 0000	0 0276 03FF	1K	EDMA TPCC0 Transfer Controller (TPTC) 0
0276 8000	0276 83FF	0 0276 8000	0 0276 83FF	1K	EDMA TPCC0 Transfer Controller (TPTC) 1
0277 0000	0277 03FF	0 0277 0000	0 0277 03FF	1K	EDMA TPCC1 Transfer Controller (TPTC) 0
0277 8000	0277 83FF	0 0277 8000	0 0277 83FF	1K	EDMA TPCC1 Transfer Controller (TPTC) 1
0278 0000	0278 03FF	0 0278 0000	0 0278 03FF	1K	EDMA TPCC1 Transfer Controller (TPTC) 2
0278 8000	0278 83FF	0 0278 8000	0 0278 83FF	1K	EDMA TPCC1 Transfer Controller (TPTC) 3
0279 0000	0279 03FF	0 0279 0000	0 0279 03FF	1K	EDMA TPCC2 Transfer Controller (TPTC) 0
0279 8000	0279 83FF	0 0279 8000	0 0279 83FF	1K	EDMA TPCC2 Transfer Controller (TPTC) 1
027A 0000	027A 03FF	0 027A 0000	0 027A 03FF	1K	EDMA TPCC2 Transfer Controller (TPTC) 2
027A 8000	027A 83FF	0 027A 8000	0 027A 83FF	1K	EDMA TPCC2 Transfer Controller (TPTC) 3
027D 0000	027D 3FFF	0 027D 0000	0 027D 3FFF	16k	TI Embedded Trace Buffer (TETB) - Core 0
027E 0000	027E 3FFF	0 027E 0000	0 027E 3FFF	16k	TI Embedded Trace Buffer (TETB) - Core 1
027F 0000	027F 3FFF	0 027F 0000	0 027F 3FFF	16k	TI Embedded Trace Buffer (TETB) - Core 2
0280 0000	0280 3FFF	0 0280 0000	0 0280 3FFF	16k	TI Embedded Trace Buffer (TETB) - Core 3
0285 0000	0285 7FFF	0 0285 0000	0 0285 7FFF	32k	TI Embedded Trace Buffer

					(TETB) - System
					Serial RapidIO
0290 0000	0290 7FFF	0 0290 0000	0 0290 7FFF	32K	Configuration
					Queue Manager Subsystem
02A0 0000	02AF FFFF	0 02A0 0000	0 02AF FFFF	1M	Configuration
					Extended Memory
0800 0000	0800 FFFF	0 0800 0000	0 0800 FFFF	64k	Controller (XMC)
	00001111	0 0000 0000	0 0000 1111	0 110	Configuration
					Multicore Shared Memory
0BC0 0000	OBCF FFFF	0 0BC0 0000	0 OBCF FFFF	1M	Controller (MSMC) Config
					Multicore Shared Memory
0C00 0000	OC1F FFFF	0 0C00 0000	0 0C1F FFFF	2M	(MSM)
1080 0000	108F FFFF	0 1080 0000	0 108F FFFF	1M	Core 0 L2 SRAM
10E0 0000	10E0 7FFF	0 10E0 0000	0 10E0 7FFF	32k	Core 0 L1P SRAM
10F0 0000	10F0 7FFF	0 10F0 0000	0 10F0 7FFF	32k	Core 0 L1D SRAM
1180 0000	118F FFFF	0 1180 0000	0 118F FFFF	1M	Core 1 L2 SRAM
11E0 0000	11E0 7FFF	0 11E0 0000	0 11E0 7FFF	32k	Core 1 L1P SRAM
11F0 0000	11F0 7FFF	0 11F0 0000	0 11F0 7FFF	32k	Core 1 L1D SRAM
1280 0000	128F FFFF	0 1280 0000	0 128F FFFF	1M	Core 2 L2 SRAM
12E0 0000	12E0 7FFF	0 12E0 0000	0 1260 7FFF	32k	Core 2 L1P SRAM
12F0 0000	12F0 7FFF	0 12F0 0000	0 12F0 7FFF	32k	Core 2 L1D SRAM
1380 0000	1388 FFFF	0 1380 0000	0 1388 FFFF	1M	Core 3 L2 SRAM
13E0 0000	13E0 7FFF	0 13E0 0000	0 1360 7FFF	32k	Core 3 L1P SRAM
13F0 0000	13F0 7FFF	0 13F0 0000	0 13F0 7FFF	32k	Core 3 L1D SRAM
1310 0000	1310 7111	0 131 0 0000	0 1310 7111	JZK	System Trace Manager
2000 0000	200F FFFF	0 2000 0000	0 200F FFFF	1M	(STM) Configuration
2060 0000	206F FFFF	0 2060 0000	0 206F FFFF	1M	TCP3d-B Data
2080 0000	208F FFFF	0 2080 0000	0 208F FFFF	1M	TCP3d-A Data
2090 0000	2090 1FFF	0 2090 0000	0 2090 1FFF	8K	TCP3e Data Write Port
2090 2000	2090 3FFF	0 2090 2000	0 2090 3FFF	8K	TCP3e Data Read Port
20B0 0000	2081 FFFF	0 20B0 0000	0 2081 FFFF	128k	Boot ROM
20BF 0000	20BF 03FF	0 20BF 0000	0 20BF 03FF	1k	SPI
2100 0000	2100 00FF	0 2100 0000	0 2100 00FF	256	DDR3 EMIF Configuration
2140 0000	2140 03FF	0 2140 0000	0 2140 03FF	1K	HyperLink Config
2180 0000	2140 0311 2180 7FFF	0 2140 0000	0 2140 0311 0 2180 7FFF	32K	PCIe Config
22A0 0000	22A0 FFFF	0 22A0 0000	0 22A0 FFFF	64K	VCP2 A
22B0 0000	22B0 FFFF	0 22B0 0000	0 22B0 FFFF	64K	VCP2_A VCP2_B
22C0 0000	22C0 FFFF	0 22C0 0000	0 22C0 FFFF	64K	VCP2_B VCP2_C
					_
22D0 0000	22D0 FFFF	0 22D0 0000	0 22D0 FFFF	64K	VCP2_D
3400 0000	341F FFFF	0 3400 0000	0 341F FFFF	2M	Queue Manager Subsystem Data
4000 0000	4FFF FFFF	0 4000 0000	0 4FFF FFFF	256M	HyperLink Data
6000 0000	6FFF FFFF	0 6000 0000	0 6FFF FFFF	256M	PCle Data
8000 0000	FFFF FFFF	8 8000 0000	8 FFFF FFFF	2G	DDR3 EMIF Data

2.2 EVM Boot Mode and Boot Configuration Switch Settings

The TMDXEVM6670L has five configuration switches: SW3, SW4, SW5, SW6 and SW9 that contain 19 individual values latched when reset is released. This occurs when power is applied on the board, after the user presses the FULL_RESET push button or after a POR reset is requested from the MMC.

SW3 determines the general DSP configuration, Little or Big Endian mode, and boot device selection.

SW4, SW5, SW6 and SW9 determine the DSP boot device configuration, CorePac PLL setting and PCIe mode selection.

More information about using these DIP switches is contained in Section 3.3 of this document. For more information on DSP supported Boot Modes, refer to TMS320C6670
Data Manual and C66x Bootloader User Guide.

2.3 JTAG - Emulation Overview

The TMDXEVM6670L has onboard embedded JTAG emulation circuitry; users do not require an external emulator to connect the EVM with Code Composer Studio. Users can connect CCS with the target DSP in the EVM through the USB cable supplied along with this board.

In case users wish to connect an external emulator to the EVM, the TI 60-pin JTAG header (EMU1) is provided for high speed real-time emulation. The TI 60-pin JTAG supports all standard TI DSP emulators. An adapter will be required for use with some emulators.

The on-board embedded JTAG emulator is the default connection to the DSP. However when an external emulator is connected to EVM, the board circuitry switches automatically to give emulation control to the external emulator.

When the on-board emulator and external emulator are connected at the same time, the external emulator has priority and the onboard emulator is disconnected from the DSP.

The third way of accessing the DSP is through the JTAG port on the AMC edge connector, users can connect the DSP through the AMC backplane if they don't use the XDS100 on-board emulator and the 60-pin header with the external emulator.

The JTAG interface among the DSP, on-board emulator, external emulator and the AMC edge connector is shown in the below figure:

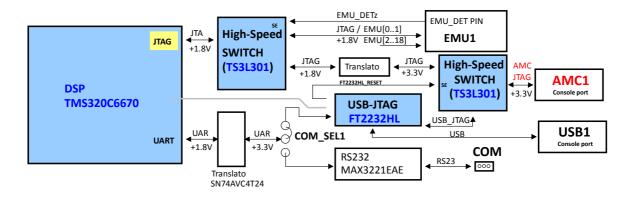


Figure 2.1: TMDXEVM6670L EVM JTAG emulation

2.4 Clock Domains

The EVM incorporates a variety of clocks to the TMS320C6670 DSP as well as other devices that are configured automatically during the power up configuration sequence. The figure below illustrates clocking for the system in the EVM module.

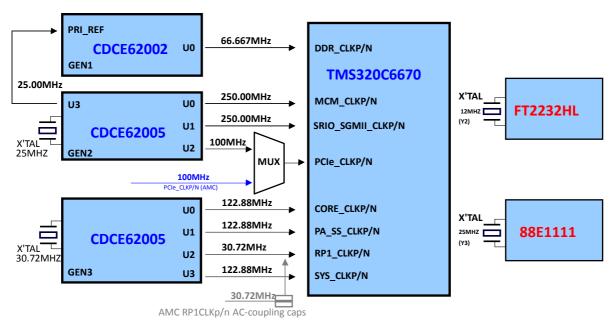


Figure 2.2: TMDXEVM6670L EVM Clock Domains

2.5 Non-Volatile Memories (SEEPROM / SPI NOR Flash / NAND flash)

The I2C modules on the TMS320C6670 may be used by the DSP to control local peripheral ICs (DACs, ADCs, etc.) or may be used to communicate with other controllers in a system or to implement a user interface.

The I2C bus is connected to one SEEPROM and to the 80-pin expansion header (TEST_PH1). There are two banks in the I2C SEEPROM which respond separately at addresses 0x50 and 0x51. These banks can be loaded with demonstration programs. Currently, the bank at 0x50 contains the I2C boot code and PLL initialization procedure and the bank at 0x51 contains the second level boot-loader program. The second level boot-loader can be used to run the POST program or launch the OOB demonstration from NOR flash memory.

The serial peripheral interconnect (SPI) module provides an interface between the DSP and other SPI-compliant devices. The primary intent of this interface is to allow for connection to a SPI ROM for boot. The SPI module on TMS320C6670 is supported only in Master mode.

The NOR FLASH attached to CSOz on the TMS320C6670 is a NUMONYX N25Q128A21. This NOR FLASH size is 16MB. It can contain demonstration programs such as POST or the OOB demonstration. The CS1z of the SPI is used by the DSP to access registers within the FPGA.

The NAND flash is connected by the TMS320C6670 GPIO pins to access the 64M bytes NAND flash, the GPIO pins on the TMS320C6670 connected to the FPGA are only used to boot

configurations during the Power-on period on the EVM. The function block and pin connections are shown in the following figure and table.

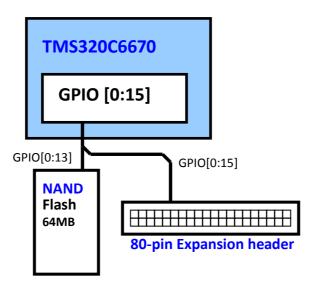


Figure 2.3: TMDXEVM6670L EVM NAND flash connections

DSP GPIO	NAND Flash	Pin Description
GPIO[7:0]	I/O[7:0]	The 8-bit data bus
GPIO8	CL	The Command Latch Enable pin
GPIO9	AL	The Address Latch Enable pin
GPIO10	WE#	The Write Enable pin
GPIO11	R/B#	The Ready/Busy# pin
GPIO12	RE#	The Read Enable pin
GPIO13	CE#	The Chip Enable pin
NAND_WP#	WP#	The Write Protect pin
Driving by FPGA		(It's controlled by the FPGA)

Table 2.2: TMDXEVM6670L EVM NAND flash connections

2.6 FPGA Functions

The FPGA (Xilinx XC3S200AN) controls the reset mechanism of the DSP and provides boot mode and boot configuration data to the DSP through SW3, SW4, SW5, SW6 and SW9. The FPGA also provides the transformation of TCLK[A:D] from AMC connector for the Timer of the DSP, user LEDs control, and one user switch through control registers. All FPGA registers are accessible over the SPI interface.

The figure below shows the interface between TMS320C6670 DSP and FPGA.

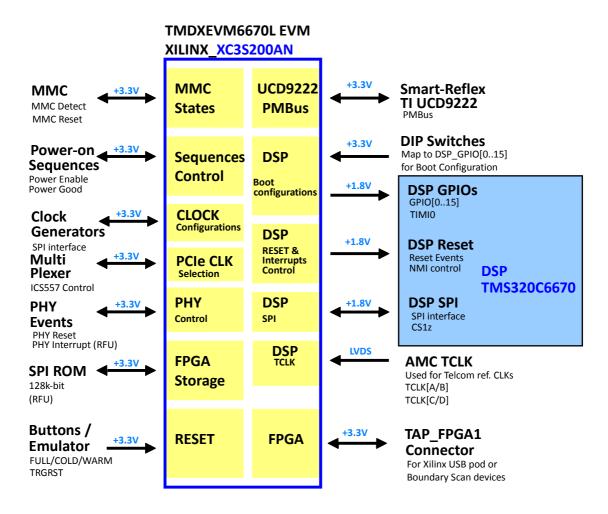


Figure 2.4: TMDXEVM6670L EVM FPGA Connections

2.7 Gigabit Ethernet Connections

The TMDXEVM6670L provides connectivity for both SGMII Gigabit Ethernet ports on the EVM. These are shown in figure below:

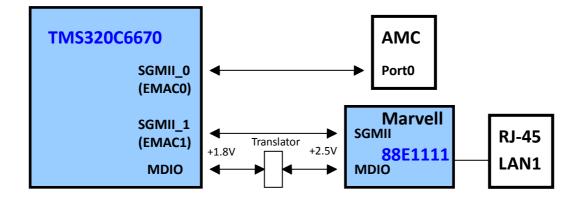


Figure 2.5: TMDXEVM6670L EVM Ethernet Routing

The Ethernet PHY (PHY1) is connected to DSP EMAC1 to provide a copper interface and routed to a Gigabit RJ-45 connector (LAN1). The EMAC0 of DSP is routed to Port0 of the AMC edge connector backplane interface.

2.8 Serial RapidIO (SRIO) Interface

The TMDXEVM6670L supports high speed SERDES based Serial RapidIO (SRIO) interface. There are total 4 RapidIO ports available on TMS320C6670. All SRIO ports are routed to AMC edge connector on board. Below figure shows RapidIO connections between the DSP and AMC edge connector.

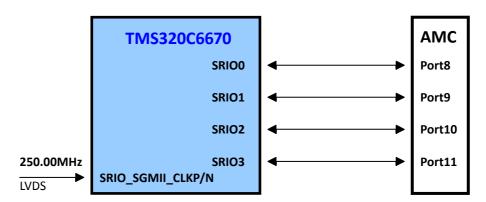


Figure 2.6: TMDXEVM6670L EVM SRIO Port Connections

2.9 DDR3 External Memory Interface

The TMS320C6670 DDR3 interface connects to four 1Gbit (64Meg x 16) DDR3 1333 devices. This configuration allows the use of both "narrow (16-bit)", "normal (32-bit)", and "wide (64-bit)" modes of the DDR3 EMIF.

SAMSUNG DDR3 K4B1G1646x-BCH9 SDRAMs (64Mx16; 667Mhz) are used on the DDR3 EMIF.

Below figure illustrates the implementation for the DDR3 SDRAM memory.

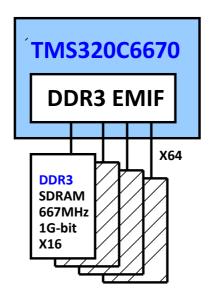


Figure 2.7: TMDXEVM6670L EVM SDRAM

2.10 HyperLink interface

The TMS320C6670 provides the HyperLink bus for companion chip/die interfaces. This is a four-lane SerDes interface designed to operate at 12.5 Gbps per lane. The interface is used to connect with external accelerators.

The interface includes the Serial Station Management Interfaces used to send power management and flow messages between devices. This consists of four LVCMOS inputs and four LVCMOS outputs configured as two 2-wire output buses and two 2-wire input buses. Each 2-wire bus includes a data signal and a clock signal.

Below figure illustrates the HyperLink bus connections on the TMDXEVM6670L EVM.

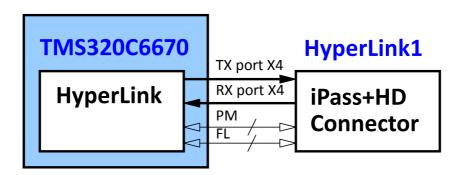


Figure 2.8: TMDXEVM6670L EVM HyperLink connections

2.11 PCI express interface

The 2 lane PCI express (PCIe) interface on TMDXEVM6670L provides a connection between the DSP and AMC edge connector. The PCI Express interface provides low pin count, high reliability, and high-speed data transfer at rates of 5.0 Gbps per lane on the serial links. For more information, see the Peripheral Component Interconnect Express (PCIe) for KeyStone Devices User Guide (literature number SPRUGS6).

The TMDXEVM6670L provides the PCIe connectivity to AMC backplane on the EVM, this is shown in below figure.

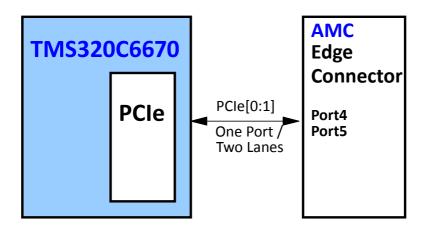


Figure 2.9: TMDXEVM6670L EVM PCIE Port Connections

2.12 Antenna Interface (AIF2)

The TMS320C6670 supports a high-speed SERDES-based Antenna Interface (AIF2) that operates up to 6.144Gbps. A six-lane SerDes-based Antenna Interface is available on the TMDXEVM6670. All Antenna Interface ports are routed to the AMC edge connector on the board.

Below figure shows the AIF connections on the TMDXEVM6670L EVM.

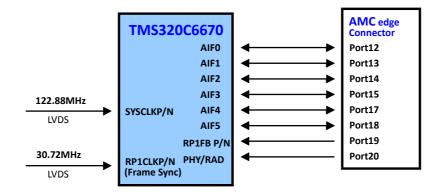


Figure 2.10: TMDXEVM6670L EVM AIF Port Connections

2.13 UART Interface

A serial port is provided for UART communication by the TMS320C6670. This serial port can be accessed either through the USB connector (USB1) or through the three-pin (Tx, Rx, and GND) serial port header (COM1). The selection can be made through the UART Route Select shunt-post COM_SEL1 as follows:

- UART over mini-USB Connector Shunts installed over COM_SEL1.3- COM_SEL1.1 and COM_SEL1.4 COM_SEL1.2 (**Default**)
- UART over 3-Pin Header (COM1) Shunts installed over COM_SEL1.3- COM_SEL1.5 and COM_SEL1.4 -COM_SEL1.6

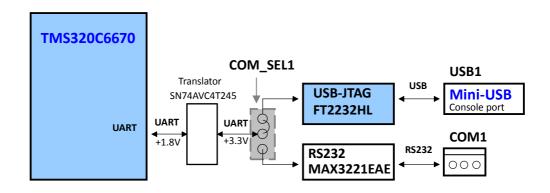


Figure 2.11: TMDXEVM6670L EVM UART Connections

2.14 Module Management Controller (MMC) for IPMI

The TMDXEVM6670L supports a limited set of Intelligent Platform Management Interface (IPMI) commands using the Module Management Controller (MMC) based on Texas Instruments MSP430F5435 mixed-signal processor.

The MMC communicates with the MicroTCA Carrier Hub (MCH) over the IPMB (Intelligent Platform Management Bus) when inserted into an AMC slot of a PICMG® MTCA.0 R1.0-compliant chassis. The primary purpose of the MMC is to provide necessary information to the MCH, to enable the payload power to the TMDXEVM6670L EVM when it is inserted into the MicroTCA chassis.

The EVM also supports a Blue LED (D2) and Red LED (D1) on the front panel as specified in PICMG® AMC.0 R2.0 AdvancedMC base specification. Both of these LEDs will blink as part of the initialization process when the MMC receives management power.

Blue LED (D2):

The blue LED comes ON when MicroTCA chassis is powered ON and an EVM is inserted into it. The blue LED goes OFF when payload power is enabled to the EVM by the MCH.

Red LED (D1):

Red colored (D1) will normally be OFF. It will turn ON to provide basic feedback about failures and out of service.

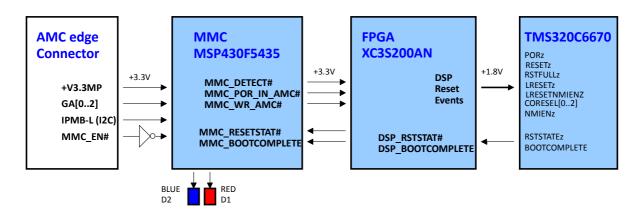


Figure 2.12: TMDXEVM6670L EVM MMC Connections for IPMI

2.15 Expansion Headers

The TMDXEVM6670L contains an 80-pin header (TEST_PH1) which has I²C, TIMI[0:1], TIMO[0:1], SPI, GPIO[15:0], and UART signal connections. It should be noted that I²C, TIMI[1:0], TIMO[0:1], and SPI GPIO[15:0] connections to this header (TEST_PH1) are 1.8 V whereas UART signals are 3.3 V level.

3. TMDXEVM6670L Board Physical Specifications

This chapter describes the physical layout of the TMDXEVM6670L board and its connectors, switches, and test points. It contains:

- 3.1 Board Layout
- 3.2 Connector Index
- 3.3 Switches
- 3.4 Test Points
- 3.5 System LEDs

3.1 Board Layout

The TMDXEVM6670L board dimension is $7.11'' \times 2.89''$ (180.6mm x 73.5mm). It is a 12-layer board and powered through connector DC_IN1. Figure 3.1 and 3.2 show assembly layout of the TMDXEVM6670L EVM Board.

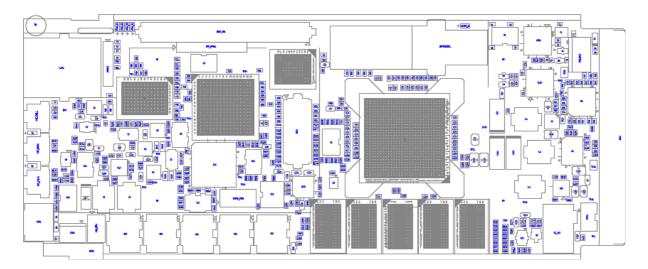


Figure 3.1: TMDXEVM6670L EVM Board Assembly Layout – TOP view

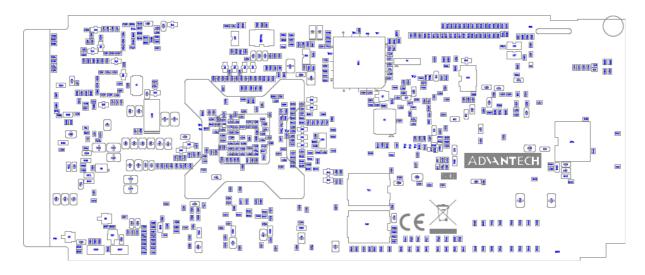


Figure 3.2: TMDXEVM6670L EVM Board layout – Bottom view

3.2 Connector Index

The TMDXEVM6670L Board has several connectors that provide access to various interfaces on the board.

Table 3.1: TMDXEVM6670L EVM Board Connectors

Connector	Pins	Function	
560V2_PWR1	8	XDS560v2 Mezzanine Power Connector	
AMC1	170	AMC Edge Connector	
COM1	3	UART 3-Pin Connector	
COM_SEL1	6	UART Route Select Jumper	
DC_IN1	3	DC Power Input Jack Connector	
EMU1	60	TI 60-Pin DSP JTAG Connector	
FAN1	3	FAN connector for +12V DC FAN	
HyperLink1	36	HyperLink connector for companion chip/die	
		interface	
LAN1	12	Gigabit Ethernet RJ-45 Connector	
PMBUS1	5	PMBUS for Smart-Reflex connected to UCD9222	
TAP_FPGA1	8	FPGA JTAG Connector	
SBW_MMC1	4	MSP430 Spy-Bi-Wire Connector For Factory Use	
		Only	
TEST_PH1	80	SPI, I ² C, GPIO, TIMI[1:0], TIMO[1:0], and UART1	
		connections	
USB1	5	Mini-USB Connector	

3.2.1 560V2_PWR1, XDS560v2 Mezzanine Power Connector

560V2_PWR1 is an 8-pin power connector for the XDS560v2 mezzanine emulator board. The pin out of the connector is shown in the table below:

Table 3.2: XDS560v2 Power Connector pin out

Pin #	Signal Name
1	+5VSupply
2	+5VSupply
3	XDS560V2_IL
4	Ground
5	+3.3VSupply
6	+3.3VSupply
7	Ground
8	Ground

3.2.2 AMC1, AMC Edge Connector

The AMC card-edge connector plugs into an AMC compatible carrier board and provides 4 Serial RapidIO lanes, 2 PCIe lanes, 1 SGMII port, 6 AIF2 lanes and the system interfaces to the carrier board. This connector is the 170 pin B+ style. The signals on this connector are shown in the table below:

Table 3.3: AMC Edge Connector

Pin	Signal	Pin	Signal
1	GND	170	GND
2	VCC12	169	AMC_JTAG_TDI
3	MMC_PS_N1#	168	AMC_JTAG_TDO
4	VCC3V3_MP_AMC	167	AMC_JTAG_RST#
5	MMC_GA0	166	AMC_JTAG_TMS
6	RSVD	165	AMC_JTAG_TCK
7	GND	164	GND
8	RSVD	163	AMC_RP1CLKP
9	VCC12	162	AMC_RP1CLKN
10	GND	161	GND
11	AMC0_SGMII0_TX_DP	160	AMC_EXP_SCL
12	AMC0_SGMII0_TX_DP	159	AMC_EXP_SDA
13	GND	158	GND
14	AMC0_SGMII0_RX_DP	157	RP1FBP
15	AMC0_SGMII0_RX_DN	156	RP1FBN
16	GND	155	GND
17	MMC_GA1	154	PHYSYNC
18	VCC12	153	RADSYNC
19	GND	152	GND
20	NC	151	AMCC_P18_AIF5_TXP
21	NC	150	AMCC_P18_AIF5_TXN
22	GND	149	GND
23	NC	148	AMCC_P18_AIF5_RXP
24	NC	147	AMCC_P18_AIF5_RXN

Pin	Signal	Pin	Signal
25	GND	146	GND
26	MMC GA2	145	AMCC P17 AIF4 TXP
27	VCC12	144	AMCC P17 AIF4 TXN
28	GND	143	GND
29	NC	142	AMCC P17 AIF4 RXP
30	NC	141	AMCC P17 AIF4 RXN
31	GND	140	GND
32	NC	139	TCLKD P
33	NC	138	TCLKD N
34	GND	137	GND
35	NC	136	TCLKC P
36	NC	135	TCLKC N
37	GND	134	GND
38	NC	133	AMCC P15 AIF3 TXP
39	NC	132	AMCC P15 AIF3 TXN
40	GND	131	GND
41	MMC_ENABLE_N	130	AMCC_P15_AIF3_RXP
42	VCC12	129	AMCC_P15_AIF3_RXN
43	GND	128	GND
44	AMCC_P4_PCle_TX1P	127	AMCC_P14_AIF2_TXP
45	AMCC_P4_PCle_TX1N	126	AMCC_P14_AIF2_TXN
46	GND	125	GND
47	AMCC_P4_PCle_RX1P	124	AMCC_P14_AIF2_RXP
48	AMCC_P4_PCle_RX1N	123	AMCC_P14_AIF2_RXN
49	GND	122	GND
50	AMCC_P5_PCIe_TX2P	121	AMCC_P13_AIF1_TXP
51	AMCC_P5_PCle_TX2N	120	AMCC_P13_AIF1_TXN
52	GND	119	GND
53	AMCC_P5_PCIe_RX2P	118	AMCC_P13_AIF1_RXP
54	AMCC_P5_PCIe_RX2N	117	AMCC_P13_AIF1_RXN
55	GND	116	GND
56	SMB_SCL_IPMBL	115	AMCC_P12_AIF0_TXP
57	VCC12	114	AMCC_P12_AIF0_TXN
58	GND	113	GND
59	NC	112	AMCC_P12_AIF0_RXP
60	NC	111	AMCC_P12_AIF0_RXN
61	GND	110	GND
62	NC	109	AMCC_P11_SRIO4_TXP
63	NC	108	AMCC_P11_SRIO4_TXN
64	GND	107	GND
65	NC	106	AMCC_P11_SRIO4_RXP
66	NC	105	AMCC_P11_SRIO4_RXN
67	GND	104	GND
68	NC	103	AMCC_P10_SRIO3_TXP
69	NC	102	AMCC_P10_SRIO3_TXN

Pin	Signal	Pin	Signal
70	GND	101	GND
71	SMB_SDA_IPMBL	100	AMCC_P10_SRIO3_RXP
72	VCC12	99	AMCC_P10_SRIO3_RXN
73	GND	98	GND
74	TCLKA_P	97	AMCC_P9_SRIO2_TXP
75	TCLKA_N	96	AMCC_P9_SRIO2_TXN
76	GND	95	GND
77	TDM_CLKB_P	94	AMCC_P9_SRIO2_RXP
78	TDM_CLKB_N	93	AMCC_P9_SRIO2_RXN
79	GND	92	GND
80	PCIE_REF_CLK_P	91	AMCC_P8_SRIO1_TXP
81	PCIE_REF_CLK_N	90	AMCC_P8_SRIO1_TXN
82	GND	89	GND
83	MMC_PS_N0	88	AMCC_P8_SRIO1_RXP
84	VCC12	87	AMCC_P8_SRIO1_RXN
85	GND	86	GND

3.2.3 COM1, UART 3-Pin Connector

COM1 is a 3-pin male connector for RS232 serial interface. A 3-pin female to 9-pin DTE female cable is supplied with the TMDXEVM6670L to connect with the PC.

Table 3.4: UART Connector pin out

Pin #	Signal Name
1	Receive
2	Transmit
3	Ground

3.2.4 COM_SEL1, UART Route Select Connector

The UART port can be accessed through the mini-USB connector (USB1) or the three-pin RS232 Serial port header (COM1). The selection can be made through the UART route select connector COM_SEL1 as follows:

- UART over USB Connector(**Default**): Shunts installed over COM_SEL1.3-COM_SEL1.1 and COM_SEL1.4-COM_SEL1.2
- UART over three-pin Header LAN1-Shunts installed over COM_SEL1.3-COM_SEL1.5 and COM_SEL1.4-COM_SEL1.6

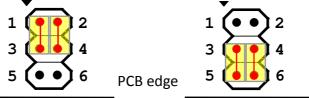

The pin out for the connector is shown in the table below:

Table 3.5: UART Path Select Connector pin out

Pin #	Signal Name	Pin #	Signal Name
1	FT2232H (USB Chip)	2	FT2232H (USB Chip)
1	Transmit	2	Receive
3	UART Transmit	4	UART Receive
5	MAX3221 Transmit	6	MAX3221 Receive

Figure 3.3: COM_SEL1 Jumper setting

Wire pin1-3 and pin2-4 Wire pin3-5 and pin4-6 UART over the XDS100v1 UART over the 3-pin terminal

3.2.5 DC_IN1, DC Power Input Jack Connector

DC_IN1 is a DC Power-in jack Connector for the stand-alone application of TMDXEVM6670L. It is a 2.5 mm power jack with positive center tip polarity. Do not use this connector if EVM is inserted into the MicroTCA chassis or the AMC carrier backplane.

3.2.6 EMU1, TI 60-Pin DSP JTAG Connector

EMU1 is a high speed system trace capable TI 60-pin JTAG connector for XDS560v2 type of DSP emulation. The on board switch multiplexes this interface with the on board XDS100 type emulator. Whenever an external emulator is plugged into EMU1, the external emulator connection will be switched to the DSP. The I/O voltage level on these pins is 1.8 V. So any 1.8V compatible emulator can be used to interface with the TMS320C6670 DSP. It should be noted that when an external emulator is plugged into this connector (EMU1), on board XDS100 type emulation circuitry will be disconnected from the DSP. The pin out for the connector is shown in the table below:

Table 3.6: TI 60-pin DSP JTAG Connector pin out

Pin #	Signal Name	Pin #	Signal Name
A1	EMU_DET	C1	ID2 (GND)
A2	Ground	C2	EMU18
А3	Ground	C3	TRST#
A4	Ground	C4	EMU16
A5	Ground	C5	EMU15
A6	Ground	C6	EMU13
A7	Ground	C7	EMU11
A8	Type0 (NC)	C8	TCLKRTN
A9	Ground	C9	EMU10
A10	Ground	C10	EMU8
A11	Ground	C11	EMU6
A12	Ground	C12	EMU4
A13	Ground	C13	EMU3
A14	Ground	C14	EMU1
A15	TRGRST#	C15	ID3 (GND)
B1	ID0 (GND)	D1	NC
B2	TMS	D2	Ground
В3	EMU17	D3	Ground
B4	TDI	D4	Ground
B5	EMU14	D5	Ground
В6	EMU12	D6	Ground
В7	TDO	D7	Ground
В8	TVD (+1.8V)	D8	Type1 (GND)
В9	EMU9	D9	Ground
B10	EMU7	D10	Ground
B11	EMU5	D11	Ground
B12	TCLK	D12	Ground
B13	EMU2	D13	Ground
B14	EMU0	D14	Ground
B15	ID1 (GND)	D15	Ground

3.2.7 FAN1, FAN Connector

The EVM incorporates a dedicated cooling fan. This fan has the capability of easily being removed when the EVM is inserted into an AMC backplane which uses forced air cooling. The fan selected provides maximum cooling (CFM) and operates on 12Vdc. FAN1 will be connected to provide 12Vdc to the fan.

Table 3.7: FAN1 Connector pin out

Pin #	Signal Name
1	GND
2	+12Vdc
3	NC

3.2.8 HyperLink1, HyperLink Connector

The EVM provides a HyperLink connection by a mini-SAS HD+ 4i connector. The connector contains 8 SERDES pairs and 4 sideband sets to carry full HyperLink signals. The connector is shown in Figure 3.4. and its pin out is shown in Table 3.8.

Figure 3.4: The HyperLink Connector

Table 3.8: The HyperLink Connector

Pin#	Net	Pin#	Net
A1	HyperLink_TXFLCLK	B1	HyperLink_RXPMDAT
A2	HyperLink_RXFLCLK	B2	HyperLink_TXFLDAT
A3	GND	В3	GND
A4	HyperLink_RXP1	B4	HyperLink_RXP0
A5	HyperLink_RXN1	B5	HyperLink_RXN0
A6	GND	В6	GND
A7	HyperLink_RXP3	В7	HyperLink_RXP2
A8	HyperLink_RXN3	B8	HyperLink_RXN2
A9	GND	В9	GND
C1	HyperLink_TXPMDAT	D1	HyperLink_RXPMCLK
C2	HyperLink_TXPMCLK	D2	HyperLink_RXFLDAT
C3	GND	D3	GND
C4	HyperLink_TXP1	D4	HyperLink_TXP0
C5	HyperLink_TXN1	D5	HyperLink_TXN0
C6	GND	D6	GND
C7	HyperLink_TXP3	D7	HyperLink_TXP2
C8	HyperLink_TXN3	D8	HyperLink_TXN2
C 9	GND	D9	GND

3.2.9 LAN1, Ethernet Connector

LAN1 is a Gigabit RJ45 Ethernet connector with integrated magnetics. It is driven by Marvell Gigabit Ethernet transceiver 88E1111. The connections are shown in the table below:

Table 3.9: Ethernet Connector pin out

Pin #	Signal Name
1	Center Tap2
2	MD2-
3	MD2+
4	MD1-
5	MD1+
6	Center Tap1
7	Center Tap3
8	MD3+
9	MD3-
10	MD0-
11	MD0+
12	Center Tap0
13	ACT_LED1-
14	ACT_LED1+
15	LINK1000_LED2-
16	LINK_LED2+
17	LINK100_LED2-
Н3	Shield 1
H4	Shield 2

3.2.10 PMBUS1, PMBUS Connector for Smart-Reflex Control

The TMS320C6670 DSP core power is supplied by a Smart-Reflex power controller UCD9222 with the Integrated FET Driver UCD74110 and UCD74106. PMBUS1 provides a connection between UCD9222 and remote connection during development. Through the USB to GPIO pod provided by TI, the user can trace and configure the parameters in UCD9222 with the Smart-Fusion GUI. The pin out of PMBUS1 is shown in table 3.10.

Table 3.10: PMBUS1 Pin out

Pin #	Signal Name
1	PMBUS_CLK
2	PMBUS_DAT
3	PMBUS_ALT
4	PMBUS_CTL
5	GND

3.2.11 TAP FPGA1, FPGA JTAG Connector (For Factory Use Only)

TAP_FPGA1 is an 8-pin JTAG connector for the FPGA programming and the PHY boundary test of the factory only. The pin out for the connector is shown in the figure below:

Table 3.11: FPGA JTAG Connector pin out

Pin #	Signal Name		
1	VCC3V3_FPGA		
2	GND		
3	BSC_JTAG_TCK		
4	BSC_JTAG_TDI		
5	BSC_JTAG_TDO		
6	BSC_JTAG_TMS		
7	BSC_JTAG_RST#		
8	BSC_JTAG_P8(PU)		

In FPGA debugging and programming mode, pin 8 of BSC_JTAG_P8 keep as PU pin to the EVM board.

The diagram of the boundary scan route is shown in Figure 3.4.

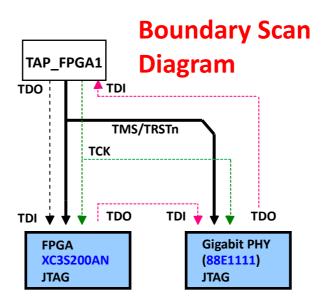


Figure 3.5: TAP_FPGA1 function diagram

3.2.12 SBW_MMC1, MSP430 SpyBiWire Connector (For Factory Use Only)

SBW_MMC1 is a 4-pin SpyBiWire connector for IPMI software loading into MSP430. The TMDXEVM6670L is supplied with IPMI software already loaded into MSP430. The pin out of the connector is shown in the table below:

Table 3.12: MSP430 SpyBiWire Connector pin out

Pin #	Signal Name
1	GND
2	VCC3V3_MP
3	MMC_SBWTDIO
4	MMC_SBWTCK

3.2.13 TEST_PH1, Expansion Header (SPI, GPIO, Timer I/O, I²C, and UART)

TEST_PH1 is an expansion header for several interfaces on the DSP; there are SPI, GPIO, Timer, I²C, and UART. The signal connections to the expansion header are shown in below table:

Table 3.13: TEST_PH1, The Expansion Header pin out

Pin	Signal	Description	Pin	Signal	Description
1	GND	Ground	2	NC	
3	DSP_SDA	DSP I2C data	4	NC	
5	DSP_SCL	DSP I2C clock	6	NC	
7	NC		8	NC	
9	NC		10	NC	
11	NC		12	NC	
13	NC		14	NC	
15	NC		16	NC	
17	NC		18	NC	
19	NC		20	NC	
21	NC		22	NC	
23	NC		24	NC	
25	NC		26	NC	
27	NC		28	NC	
29	NC		30	NC	
31	NC		32	NC	
33	NC		34	NC	
35	NC		36	NC	
37	NC		38	NC	
39	NC		40	NC	
41	NC		42	NC	

43	NC		44	NC	
45	NC		46	NC	
47	NC		48	NC	
49	NC		50	DSP_GPIO_00	DSP GPIO0
51	NC		52	DSP_GPIO_01	DSP GPIO1
53	NC		54	DSP_GPIO_02	DSP GPIO2
55	DSP_TIMI0	Timer input 0	56	DSP_GPIO_03	DSP GPIO3
57	DSP_TIMO0	Timer output 0	58	DSP_GPIO_04	DSP GPIO4
59	DSP_TIMI1	Timer input 1	60	DSP_GPIO_05	DSP GPIO5
61	DSP_TIMO1	Timer output 1	62	DSP_GPIO_06	DSP GPIO6
63	DSP_SSPMISO	SPI data input	64	DSP_GPIO_07	DSP GPIO7
65	DSP_SSPMOSI	SPI data output	66	DSP_GPIO_08	DSP GPIO8
67	DSP_SSPCS1	SPI chip select	68	DSP_GPIO_09	DSP GPIO9
69	PH_SSPCK	SPI clock	70	DSP_GPIO_10	DSP GPIO10
71	DSP_UARTTXD	UART Serial Data Out(+3.3v)	72	DSP_GPIO_11	DSP GPIO11
73	DSP_UARTRXD	UART Serial Data In (+3.3v)	74	DSP_GPIO_12	DSP GPIO12
75	DSP_UARTRTS	UART Request To Send (+3.3v)	76	DSP_GPIO_13	DSP GPIO13
77	DSP_UARTCTS	UART Cear To Send (+3.3v)	78	DSP_GPIO_14	DSP GPIO14
79	GND	Ground	80	DSP_GPIO_15	DSP GPIO15

3.2.14 USB1, Mini-USB Connector

USB1 is a five-pin mini-USB connector to connect Code Composer Studio with the TMS320C6670 DSP using XDS100 type on-board emulation circuitry. The following table shows the Pin out of the mini-USB connector.

Table 3.14: Mini-USB Connector pin out

Pin #	Signal Name
1	VBUS
2	USB D-
3	USB D+
4	ID (NC)
5	Ground

3.3 DIP and Pushbutton Switches

The TMDXEVM6670L has 3 push button switches and 5 sliding actuator DIP switches. The RST_FULL1, RST_COLD1, and RST_WARM1 are push button switches while SW3, SW4, SW5, SW6 and SW9 are DIP switches. The function of each of the switches is listed in the table below:

Table 3.15: TMDXEVM6670L EVM Board Switches

Switch	Function	
RST_FULL1	Full Reset Event	
RST_COLD1	Cold Reset Event (RFU)	
RST_WARM1	Warm Reset Event	
SW3	DSP Boot mode, DSP Configuration	
SW4	DSP boot Configuration	
SW5	DSP boot Configuration	
SW6	DSP boot Configuration, PLL	
3000	setting, PCIe mode Selection	
CVVO	PCIESS Enable/Disable, User Switch	
SW9	DSPCLKSEL and PASSCLKSEL	

3.3.1 RST FULL1, Full Reset

Pressing the RST_FULL1 button switch will issue a RESETFULL# to TMS320C6670 by the FPGA. It'll reset DSP and other peripherals.

3.3.2 RST COLD1, Cold Reset

The button is reserved for future use.

3.3.3 RST_WARM1, Warm Reset

Pressing the RST_WARM1 button switch will issue a RESET# to TMS320C6670 by the FPGA. The FPGA will assert the RESET# signal to the DSP and the DSP will execute either a HARD or SOFT resets by the configuration in the RSCFG register in PLLCTL.

Note: Users may refer to the <u>TMS320C6670 Data Manual</u> to check the difference between assertion of DSP RESET# and DSP POR# signals.

3.3.4 SW3, SW4, SW5 and SW6 DSP Boot Configurations

SW3, SW4, SW5, and SW6 are four-position DIP switches, which are used for DSP ENDIAN, Boot Device, Boot Configuration, and PCI Express subsystem configuration.

For the details about the DSP Boot modes and their configuration, please refer to the

TMS320C6670 Data Manual.

The diagram of the default setting on these switches is shown below:

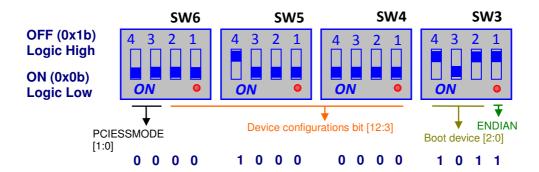


Figure 3.6: SW3, SW4, SW5, and SW6 default settings

The following table describes the positions and corresponding functions on SW.

Table 3.16: SW3-SW6, DSP Configuration Switch

SW3	Description	Default Value	Function
SW3[1]	ENDIAN	0x1b (OFF)	Device endian mode (LENDIAN).
			0 = Device operates in big endian mode
0.1.05.4.03		0.101	1 = Device operates in little endian mode
SW3[4:2]	Boot device	0x101b	Boot Device
	Bit[2:0]	(OFF,ON,OFF)	000b = None
			001b = Serial Rapid I/O 010b = SGMII (PA driven from core clk)
			011b = SGMII (PA driver from PA clk)
			100b = PCI Express
			101b = I2C
			110b = SPI
			111b = HyperLink
SW5[1]	Parameter	00000b	These 5 bits are the Parameter Index
	Index [4:0] /		when I2C is the boot device. They have
SW4[4:1]	Boot Mode	(ON,ON,ON,	other definitions for other boot
	[7:3]	ON,ON)	devices. For the details about the
			device configuration, For the details about
			the device configuration, please refer to the
			TMS320C6670 Data Manual.
SW5[2]	Mode /	0 (ON)	Mode (I2C Boot Device)
	Boot Mode		0 = Master
	[8]		1 = Slave
SW5[3]	Reserved /	0 (ON)	Bit reserved with I2C Boot Device
	Boot Mode		
	[9]		
SW5[4]	Address /	1 (OFF)	Address (I2C Boot Device)
	Boot Mode		0 = Boot from address 0x50
	[10]		1 = Boot from address 0x51

SW6[1]	Speed /	0 (ON)	Speed (I2C Boot Device)
	Boot Mode		0 = Low speed
	[11]		1 = High Speed
SW6[2]	Reserved /	0 (ON)	Bit reserved with I2C Boot Device
	Boot Mode		
	[12]		
SW6[4:3]	PCIESSMODE	00b	PCle Subsystem mode selection.
	[1:0]		00 b = PCle in end point mode
		(ON,ON)	01b = PCIe legacy end point (no
			support for MSI)
			10b = PCIe in root complex mode
			11b = Reserved

3.3.5 SW9, DSP PCIE Enable / User Defined and DSP_DSPCLKSEL / FPGA_PACLKSEL Switch Configuration

SW9 is a 4-position DIP switch. The first position is used for enabling the PCI Express Subsystem within the DSP. The second position is undefined by hardware and available for application software use. The third and fourth positions are used by selecting the PLL sources for CORECLK and PASSCLK of the DSP. A diagram of the SW9 switch (with factory default settings) is shown below:

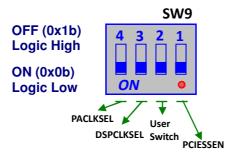


Figure 3.7: SW9 default settings

The following table describes the positions and corresponding functions on SW9.

Table 3.17: SW9, DSP PCIESSEN and User Switch /DSPCLKSEL/PACLKSEL

SW9	Description	Default Value	Function
SW9[1]	PCIESSEN	0x0b (ON)	PCIe module enable. 0 = PCIe module disabled 1 = PCIe module enabled
SW9[2]	User Switch	0x0b (ON)	Application software defined
SW9[3]	DSPCLKSEL	0x0b (ON)	CORECLKSEL : RFU, Reserved for Future Use
SW9[4]	PACLKSEL	0x0b (ON)	PACLKSEL : RFU, Reserved for Future Use

3.4 Test Points

The TMDXEVM6670L EVM Board has 27 test points. The position of each test point is shown in the figures below:

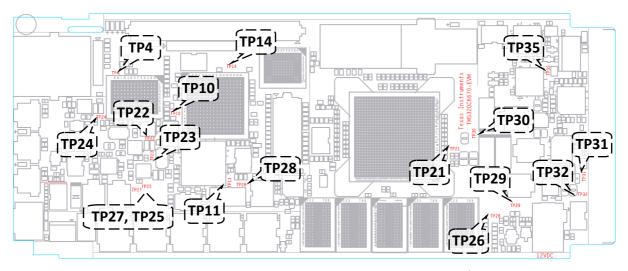


Figure 3.8: TMDXEVM6670L test points on top side

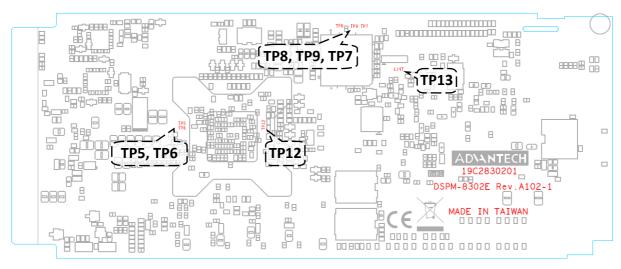


Figure 3.9: TMDXEVM6670L test points on the bottom side

Table 3.18: TMDXEVM6670L EVM Board Test Points

Test Point	Signal
TP7	Reserved for MMC1 pin23
TP8	Reserved for MMC1 pin33
TP9	Reserved for MMC1 pin25
TP5	HyperLink_REFCLKOUTP
TP6	HyperLink_REFCLKOUTN
TP12	DSP_SYSCLKOUT
TP10	Reserved for U12 (FT2232) pin60 (PWREN#)
TP11	Reserved for U12 (FT2232) pin36 (SUSPEND#)
TP4	PHY1 (88E1111) 125MHz clock (default: disable)
TP13	Reserved for FPGA1 (XC3S200AN) pin C12 (+1.8V I/O).
TP14	Reserved for FPGA1 (XC3S200AN) pin A13 (+1.8V I/O).
TP16	Reserved for FPGA1 (XC3S200AN) pin T10 (+3.3V I/O).
TP17	Reserved for FPGA1 (XC3S200AN) pin R11 (+3.3V I/O).
TP18	Reserved for FPGA1 (XC3S200AN) pin T11 (+3.3V I/O).
TP21	Test point for CVDD
TP22	Test point for VCC1V2
TP23	Test point for VCC1V8_AUX
TP24	Test point for VCC2V5
TP25	Test point for VCC1V8
TP26	Test point for VCC0V75
TP27	Test point for VCC3V3_AUX
TP28	Test point for VCC5
TP29	Test point for VCC1V5
TP30	Test point for VCC1V0
TP32	Test point for VCC12
TP31	GND SHORT PAD
TP35	GND SHORT PAD

3.5 System LEDs

The TMDXEVM6670L board has 7 LEDs. Their positions on the board are indicated in figure 3.9. The description of each LED is listed in the table below:

Table 3.19: TMDXEVM6670L EVM Board LEDs

LED#	Color	Description	
D1 Red		Failure and Out of service status in AMC chassis	
D2	Blue	Hot Swap status in AMC chassis	
SYSPG_D1	Blue	All Power rails are stable on AMC	
FPGA_D1-D4	Blue	Debug LEDs.	

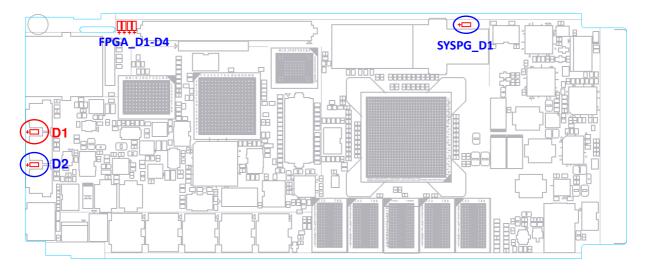


Figure 3.10: TMDXEVM6670L EVM Board LEDs

4. System Power Requirements

This chapter describes the power design of the TMDXEVM6670L board. It contains:

- 4.1 Power Requirements
- 4.2 Power Supply Distribution
- 4.3 Power Supply Boot Sequence

4.1 Power Requirements

Note that the power estimates stated in this section are maximum limits used in the design of the EVM. They have margin added to allow the EVM to support early silicon samples that normally have higher power consumption than eventual production units.

The maximum EVM power requirements are estimated to be:

```
EVM FPGA - 0.65 W;
DSP Cooling Fans - 1.2 W (+12 VDC/0.1 A);
Clock Generators & clock sources - 4.95 W;
DSP - 14.90 W; [worse case]

Core: 13.0 W;
Peripherals I/O: 1.90 W;

DDR3 - 2.63 W;

SDRAMs to support 64-bit with ECC of DSP

Misc - 0.33 W;
USB - 0.84 W;
SGMII PHY - 1.14 W;
```

EVM board total: 32.64 W.

The selected AC/DC 12-V adapter should be rated for a minimum of 36 Watts.

The power planes in TMDXEVM6670L are identified in the following table:

Table 4.1: EVM Voltage Table

Device	Net name	Voltage	Description
Input	3.3V_MP_AMC	+3.3 V	Management Power for MMC
	VCC12	+12 V	Payload Power to AMC
Management	VCC3V3_AUX	+3.3 V	3.3 V Power Rail for all support
			devices on EVM
	VCC1V2	+1.2 V	1.2 V Power Rail for all support
			devices on EVM
	VCC1V8_AUX	+1.8V	1.8V Power Rail for all support
			devices on EVM
TMS320C6670	CVDD	+0.6V~1.10V	DSP Core Power
	VCC1V0	+1.0V	DSP Fixed Core Power
	VCC1V8	+1.8V	DSP I/O power
	VCC1V5	+1.5V	DSP DDR3 and SERDES Power
DDR3 Memory	VCC1V5	+1.5V	DDR3 RAM Power
	VCC0V75	+0.75V	DDR3 RAM Termination Power
NAND Flash	VCC1V8	+1.8V	NAND Flash Power
NOR Flash (SPI)	VCC1V8	+1.8V	SPI NOR Flash Power
CDCE62002	VCC3V3_AUX	+3.3V	Clock Gen Power
CDCE62005	VCC3V3_AUX	+3.3V	Clock Gen Power
PHY (88E111)	VCC2V5	+2.5V	PHY Analog and I/O Power
	VCC1V2	+1.2V	PHY Core Power (instead of 1.0V)
USB Emulator	VCC3V3_AUX	+3.3V	USB Emulation Power (FT2232H)
	VCC1V8_AUX	+1.8V	USB Emulation Power (FT2232H)
MMC (MPS430)	VCC3V3_MP	+3.3V	MMC Power
FPGA	VCC1V2	+1.2V	FPGA Core Power
	VCC3V3_AUX	+3.3V	FPGA I/O Power for +3.3V bank
	VCC1V8_AUX	+1.8V	FPGA I/O Power for +1.8V bank
Misc. Logic	VCC3V3_AUX	+3.3V	Translator and Logic Power
	VCC1V8_AUX	+1.8V	Translator and Logic Power

The following table identifies the expected power requirements for each power plane of the devices on the TMDXEVM6670L EVM.

Table 4.2: Each Current Requirements on each device of EVM board

TMS320C6670	V(V)	I(A)	Qty	Pd (W)
CVDD (Core)	1.00	9.75	1	9.75	
VCC1V0 (I/O)	1.00	4.52	1	4.52	14.88
VCC1V8(I/O)	1.80	0.116	1	0.21	
VCC1V5(I/O)	1.50	0.266	1	0.40	
DDR3	V(V)	I(A)	Qty	Pd(W)
VCC1V5	1.50	0.30	5	2.25	2.63
VCC0V75	0.75	0.10	5	0.38	2.03
FPGA	V(V)	I(A)	Qty	Pd(W)
VCC3V3_AUX	3.30	0.03	1	0.10	
VCC1V2	1.20	0.13	1	0.16	0.62
VCC1V8_AUX	1.80	0.20	1	0.36	
XDS560V2	V(V)	I(A)	Qty	Pd(W)
VCC5	5.00	1.00	1	5.00	5.99
VCC3V3_AUX	3.30	0.30	1	0.99	3.33
CDCE62005	V(V)	I(A)	Qty	Pd(W)
VCC3V3_AUX	3.30	0.50	2	3.30	3.30
CDCE62002	V(V)	I(A)	Qty	Pd('	W)
VCC3V3_AUX	3.30	0.50	1	1.65	1.65
PHY (88E1111)	V(V)	I(A)	Qty	Pd(W)
VCC2V5_AUX	3.30	0.21	1	0.69	1.14
VCC1V2_AUX	1.80	0.25	1	0.45	1.14
FT2232	V(V)	I(A)	Qty	Pd(W)	
VCC3V3_AUX	3.30	0.21	1	0.69	0.84
VCC1V8_AUX	1.80	0.08	1	0.14	0.64
MMC (MSP430)	V(V)	I(A)	Qty	Pd(W)	
VCC3V3_MP	3.30	0.02	1	0.07	0.07

4.2 Power Supply Distribution

A high-level block diagram of the power supplies is shown in Figure 4.1 as well as on the schematic.

In Figure 4.1, the Auxiliary power rails are always on after payload power is supplied. These regulators support all control, sequencing, and boot logic. The Auxiliary Power rails contain:

- VCC3V3 AUX
- VCC1V8 AUX
- VCC1V2
- VCC5 AUX

The maximum allowable power is 36 W from the external AC brick supply or from the 8 AMC header pins.

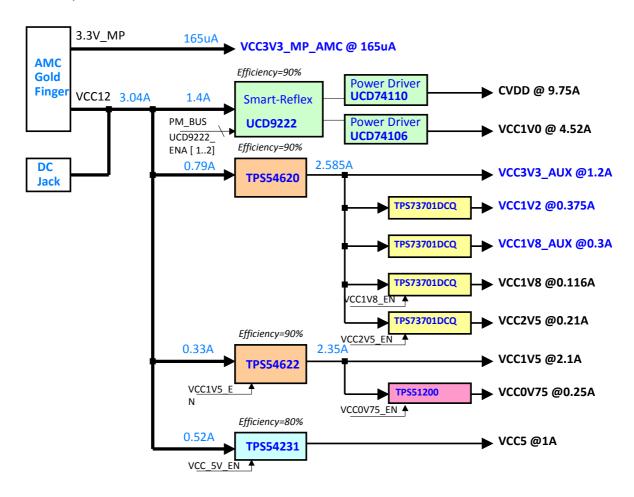


Figure 4.1: All the AMC power supply on TMDXEVM6670L EVM

Individual control for each (remaining) voltage regulator is provided to allow flexibility in how the power planes are sequenced (See section 4.3 for specific details). The goal of all power supply designs is to support a minimum temperature range of 0°C to 45°C.

The TMS320C6670 core power is supplied using a dual digital controller coupled to a high performance FET driver IC. Additional DSP supply voltages are provided by discrete TI Swift power supplies. The TMS320C6670 supports a VID interface to enable Smart-Reflex® power supply control for its primary core logic supply. Refer to the TMS320C6670 Data Manual and other documentation for an explanation of the Smart-Reflex® control.

Figure 4.1 shows that the EVM power supplies are a combination of switching supplies and linear supplies. The linear supplies are used to save space for small loads. The switching supplies are implemented for larger loads. The switching supplies are listed below followed

by explanations of critical component selection:

- CVDD (AVS core power for TMS320C6670)
- VCC1V0 (1.0V fixed core power for TMS320C6670)
- VCC3V3 AUX (3.3V power for peripherals)
- VCC1V5 (1.5V DDR3 power for TMS320C6670 and DDR3 memories)
- VCC5 (5.0V power for the XDS520V2 mezzanine card)

The **CVDD** and **VCC1V0** power rails are regulated by TI Smart-Reflex controller UCD9222 and the synchronous-buck power driver UCD74110 and UCD74106 to supply DSP AVS core and CVDD1 core power.

The **VCC3V3_AUX** and **VCC1V5** power rails are regulated by two TI 6A Synchronous Step Down SWIFT™ Converters, TPS54620, to supply the peripherals and other power sources and the DSP DDR3 EMIF and DDR3 memory chips respectively.

The **VCC5** power rail is regulated by TI 2A Step Down SWIFT™ DC/DC Converter, TPS54231, to supply the power of the XDS560V2 mezzanine card on TMDXEVM6670L.

The high level diagrams and output components are shown in figure 4.2, figure 4.3, figure 4.4 and figure 4.5 as well as choosing the proper inductors and buck capacitors.

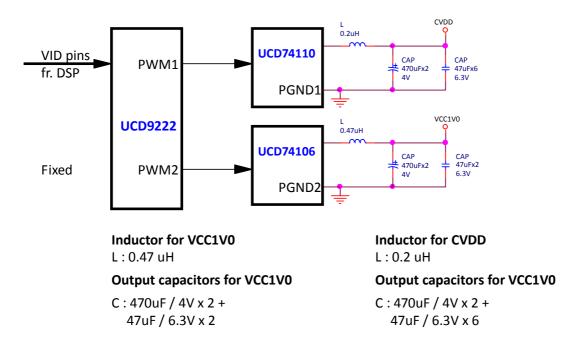
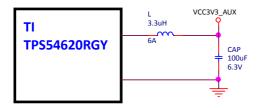



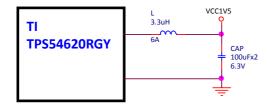
Figure 4.2: The CVDD and VCC1V0 (CVDD1) power design on TMDXEVM6670L EVM

(Over all tolerance is 5%, DC tolerance is 2.5%) (KIND=0.3)

Output capacitor Calculation Inductor Calculation

Cout> $(2 \times delta(lout))/(Fsw \times delta(Vout)) L = ((Vin(max) - Vout)/lout \times Kind)) \times (Vout/(Vin(max) \times Fsw))$

Cout> $(2 \times 3)/(840 \text{KHz} \times 0.0825)$ L = $((12.6 - 3.3)/3 \times \text{Kind}) \times (3.3/(12 \times 840 \text{KHz}))$


Cout> (6)/(69300) L = $((8.7/3 \times 0.3) \times (3.3 / (10.08M))$

Cout>87uF $L = (9.67) \times (0.33u)$

Reference Capacitor: 100uF L~3.2uH

Reference Inductor 3.3uH

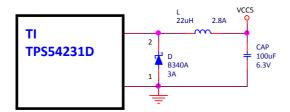
Figure 4.3: The VCC3_AUX power esign on TMDXEVM6670L EVM

(Over all tolerance is 5%, DC tolerance is 2.5%)

Output capacitor Calculation Inductor Calculation (KIND=0.3)

Cout> (2 x delta(lout))/(Fsw x delta(Vout)) L = ((Vin(max) - Vout)/lout x Kind)) x (Vout/(Vin(max) x Fsw))

Cout> $(2 \times 2.5)/(840 \text{KHz} \times 0.0375)$ L = $((12 - 1.5)/2.5 \times \text{Kind}) \times (1.5 / (12 \times 840 \text{KHz}))$


Cout> (5)/(31500) L = $((10.5/2.5 \times 0.3) \times (1.5 / (10.08M))$

Cout> 159uF L = (10.51/0.75) x (0.1488M)

Reference Capacitor: 100uF x 2=200uF L = 2.09uH

Reference Inductor 3.3uH

Figure 4.4: The VCC1V5 power design on TMDXEVM6670L EVM

Output capacitor Calculation

 $C_{O_{-\min}} = 1/(2 \times \pi \times R_O \times F_{CO_{-\max}})$

Cout: 1/(2 x 3.14 x 5 x 25K)

Cout : 1.3 uf

Reference Capacitor: 100uF

Inductor Calculation (KIND=0.3)

L: ((Vin(max) - Vout)/lout x Kind)) x (Vout/(Vin(max) x Fsw))

L: ((12.6 - 5)/1 x Kind) x (5 / (12.7 x 570K))

L: ((7.6/0.3) x (5 / (7239K))

L: (25.3) x (0.69M)

L: 17.5uH

Reference Inductor 22uH

Figure 4.5: The VCC5 power design on TMDXEVM6670L EVM

4.3 The Power Supply Boot Sequence

Specific power supply and clock timing sequences are identified below. The TMS320C6670 DSP requires specific power up and power down sequencing. Figure 4.6 and Figure 4.7 illustrate the correct boot up and down sequence. Table 4.3 provides the timing details for Figure 4.6 and Figure 4.7.

Refer to the TMS320C6670 DSP Data Manual for confirmation of specific sequencing and timing requirements.

Step	Power rails	Timing	Descriptions
	Power-Up		
1	VCC12 (AMC Payload power), VCC3V3_AUX, VCC1V8_AUX VCC1V2 VCC5	Auto	When the 12V power supplied to the TMDXEVM6670L, the 3.3V, 1.8V and 1.2V supplies to the FPGA power will turn on. The 1.8V outputs on the FPGA to the DSP will be locked (held at ground).
2	VCC2V5	10mS	Turn on VCC2V5 after VCC3V3 stable for 10mS.
3	CVDD (DSP AVS core power)	5mS	Enable the CVDD and VCC1V0, the UCD9222 power rail#1 is for CVDD and go first after both of VCC5 and VCC2V5 are stable for 5mS.
4	VCC1V0 (DSP CVDD1 fixed core power)	5mS	Turn on VCC1V0, the UCD222 power rail#2. The VCC1V0 will start the regulating power rail after enable it after 5mS, the start-delay time is set by the UCD9222 configuration file.
5	VCC1V8 (DSP IO power)	5mS	Turn on VCC1V8 after VCC1V0 stable for 5mS.
6	CDCE62005#2/#3 initiations CDCE62002#1 initiations FPGA 1.8V outputs	5mS	Unlock the 1.8V outputs and initiate the CDCE62005s and CDCE62002 after VCC1V8 stable for 5mS. De-asserted CDCE62005s and CDCE62002 power down pins (PD#), initial the clock generators.
7	VCC1V5 (DSP DDR3 power)	5mS	Turn on VCC1V5 after initiation of the clock generators for 5mS.
8	VCC0V75	5mS	Turn on VCCOV75 after VCC1V5 stable for 5mS. When VCC1V5 is valid, FPGA will de-assert the power down pin on

9	RESETz Other reset and NMI pins	5mS	the ICS557-08, the PCIE clock multiplexer. When the VCCOV75 is valid, FPGA will enable the ICS557-08 clock outputs by the OE# pin on it. De-asserted RESETz and unlock other reset and NMI pins for the DSP after VCCOV75 stable and 3 clock generators' PLLs locked for
			5mS. In the meanwhile, the FPGA will driving the boot configurations to the DSP GPIO pins.
10	PORz	5mS	De-asserted PORz after RESETz de-asserted for 5mS.
11	RESETFULLz	5mS	De-asserted RESETFULLz after PORz de-asserted for 5mS.
12	DSP GPIO pins for boot configurations	1mS	Release the DSP GPIO pins after RESETFULLz de-asserted for 1mS
	Power-Down		
13	RESETFULLZ PORz	0mS	If there is any power failure events or the AMC payload power off, the FPGA will assert the RESETFULLz and PORz signals to the DSP.
14	FPGA 1.8V outputs to DSP CDCE62005 and CDCE62002 PDz pins	5mS	Locked 1.8V output pins on the FPGA and pull the CDCE62005 and CDCE62002 PDz pins to low to disable the DSP clocks.
15	CVDD VCC1V0 VCC1V8 VCC1V5 VCC0V75 VCC2V5 ICS557-08 PD# and OE#	0mS	Turn off all main power rails.

Table 4.3: The power-up and down timing on the TMDXEVM6670L

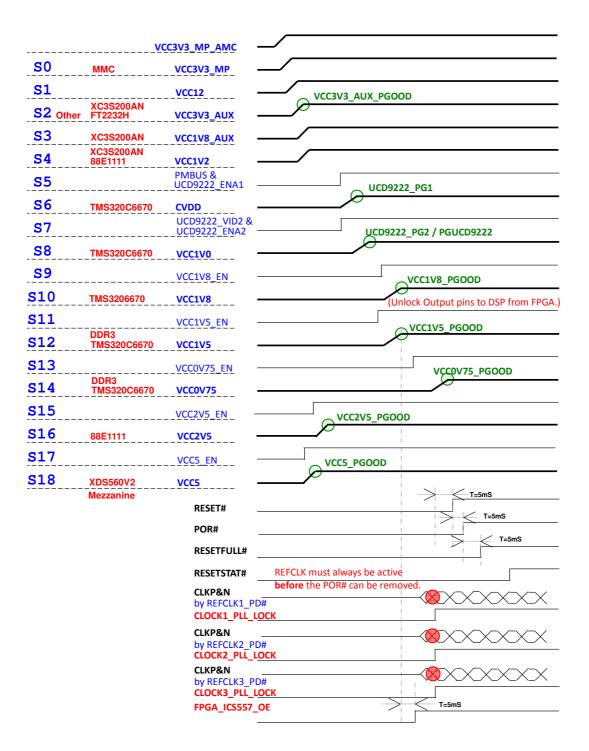


Figure 4.6: Initial Power-on Sequence Timing Diagram

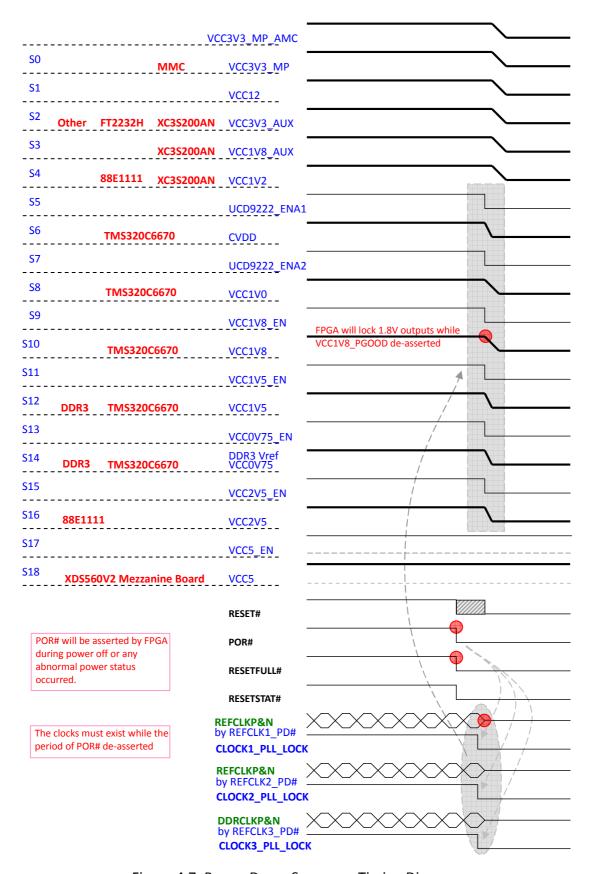


Figure 4.7: Power Down Sequence Timing Diagram

5. TMDXEVM6670L FPGA FUNCTIONAL DESCRIPTION

This chapter contains,

- 5.1 FPGA overview
- 5.2 FPGA signals description
- 5.3 Sequence of operation
- 5.4 Reset definition
- 5.5 SPI protocol
- 5.6 CDCE62005 & CDCE62002 Programming Descriptions
- 5.7 FPGA Configuration Registers

5.1 FPGA overview

The FPGA (Xilinx XC3S200AN) controls the EVM power sequencing, reset mechanism, DSP boot mode configuration and clock initialization. The FPGA also provides the transformation of TDM Frame Synchronization signal and Reference Clock between the AMC connector and the DSP.

The FPGA also supports 4 user LEDs and 1 user switch through control registers. All the FPGA registers are accessible by the TMS320C6670 DSP.

The key features of the TMDXEVM6670L EVM FPGA are:

- TMDXEVM6670L EVM Power Sequence Control
- TMDXEVM6670L EVM Reset Mechanism Control
- TMDXEVM6670L EVM Clock Generator Initialization and Control
- TMS320C6670 DSP SPI Interface for accessing the FPGA Configurable Registers
- Provides Shadow Registers for TMS320C6670 DSP to Access the Clock Generator Configurations Registers
- Provides Shadow Registers for TMS320C6670 DSP to Access the UCD9222 Devices via the PM Bus (TBD)
- Provides TMS320C6670 DSP Boot Mode Configuration switch settings to DSP
- MMC Reset Events Initiation Interface
- Provides the TCLK transformation from the LVDS format to single ended 1.8V level signal between AMC edge connector and the DSP
- Provide Ethernet PHY Interrupt and Reset Control Interface

- Provides Reset Buttons, User Switches, and Debug LEDs
- FPGA Device and Packaging
 XILINX XC3S200AN FPGA
 256 Ball ftBGA (17x17 mm), 1.0mm pitch

5.2 FPGA signals description

This section provides a detailed description of each signal. The signals are arranged in functional groups according to their associated interface. Throughout this manual, a '#' or 'Z' will be used at the end of a signal name to indicate that the active or asserted state occurs when the signal is at a low voltage level.

The following notations are used to describe the signal and type.

I	Input pin
0	Output pin
I/O	Bi-directional pin
Differential	Differential Pair pins
PU	Internal Pull-Up

Table 5.1: TMDXEVM6670L EVM FPGA Pin Description

Pin Name	IO Type	Description
MMC Control:	-	
MMC_DETECT#	1	MMC Detection on the insertion to an AMC
	PU	Chassis: This signal is an insertion indication
		from the MMC. The MMC will drive logic low
		state when the EVM module is inserted into an
		AMC chassis.
MMC_RESETSTAT#	0	RESETSTAT# state to MMC: The FPGA will drive
		the same status of the DSP RESETSTAT# to the
		MMC via this signal.
MMC_POR_IN_AMC#		MMC POR Request: This signal is used by the
	PU	MMC to request a Power-on reset sequence to
		DSP. A logic Low to High transition on this
		signal will complete the FPGA Full Reset
NANAC JAID ANACH	1	sequence with a specified delay time.
MMC_WR_AMC#	PU	MMC WARM Request: This signal is used by
	PU	the MMC to initiate a warm reset request. A logic Low to High transition on this signal will
		complete the FPGA warm reset sequence with
		a specified delay time.
MMC BOOTCOMPLETE	0	BOOTCOMPLETE state to MMC: The FPGA will
WINIC_BOOTCOINFEETE		drive the same status of the DSP
		BOOTCOMPLETE to the MMC via this signal.
		BOOTCOIVIT LETE to the ivilvie via this signal.

Pin Name	IO Type	Description	
Power Sequences Control	:		
VCC5_PGOOD	1	5V Voltage Power Good Indication: This signal	
		indicates the 5V power is valid.	
VCC2P5_PGOOD	1	2.5V Voltage Power Good Indication: This	
		signal indicates the 2.5V power is valid.	
VCC3_AUX_PGOOD	1	3.3V Auxiliary Voltage Power Good Indication:	
		This signal indicates the 3.3V auxiliary power is	
		valid.	
VCC0P75_PGOOD	1	0.75V Voltage Power Good Indication: This	
		signal indicates the 0.75V power is valid.	
VCC1P5_PGOOD	1	1.5V Voltage Power Good Indication: This	
		signal indicates the 1.5V power is valid.	
VCC1P8_PGOOD	1	1.8V Voltage Power Good Indication: This	
		signal indicates the 1.8V power is valid.	
SYS_PGOOD	0	System Power Good Indication: This signal is	
		indicated by the FPGA to the system when all	
		the power supplies are valid.	
VCC1P8_EN1	0	1.8V Voltage Power Supply Enable:	
		VCC1P8_EN1 is for 1.8V power plane control.	
VCC0P75_EN	0	0.75V Voltage Power Supply Enable:	
		VCC0P75_EN is for 0.75V power plane control.	
VCC2P5_EN	0	2.5V Voltage Power Supply Enable:	
		VCC2P5_EN is for 2.5V power plane control.	
VCC_5V_EN	0	5V Voltage Power Supply Enable: VCC_5V_EN	
		is for 5V power plane control.	
VCC1P5_EN	0	1.5V Voltage Power Supply Enable :	
		VCC1P5_EN is for 1.5V power plane control.	
CLOCK Configurations:			
CLOCK[1:3]_SSPCS1	0	SPI Chip Select Enable: This signal is connected	
		to the TI CDCE62002 & CDCE62005 CLOCK	
		Generators SPI_LE pin. The falling edge of the	
		SSPCS1 initiates a transfer. If SSPCS1 is high, no	
		data transfer can take place.	
CLOCK[1:3]_SSPCK	0	SPI Serial Clock: This signal is connected to the	
		TI CDCE62002 & CDCE62005 CLOCK Generators	
		SPI_CLK pin. The FPGA SPI bus clocks data in	
		and out on the rising edge of SSPCK. Data	
		transitions therefore occur on the falling edge	
		of the clock.	
CLOCK[1:3]_SSPSI	0	SPI Serial Data MOSI: This signal is connected	
		to the TI CDCE62002 & CDCE62005 CLOCK	
		Generators MOSI pin. This signal is used for	
		serial data transfers from the master (FPGA)	
		output to the slave (62002)(62005) input.	

Pin Name	IO Type	Description
CLOCK[1:3]_SSPSO	I	SPI Serial Data MISO: This signal is connected
		to the TI CDCE62002 & CDCE62005 CLOCK
		Generators MISO pin. This signal is used for the
		serial data transfers from the slave
		(62002)(62005) output to the master (FPGA)
		input.
REFCLK[1:3]_PD#	0	TI CDCE62002 / 62005 CLOCK Generator
		Power Down : The power down pins each place
		the respective CDCE62002/62005 into the
		power down state forcing the differential clock
		output into the high-impedance state.
UCD9222 Interface :	-	
UCD9222_PG1	1	UCD9222 Power Good Indication for CVDD
		DSP Core Power: This signal indicates the
		CVDD DSP core power is valid.
UCD9222_ENA1	0	UCD9222 Enable for CVDD DSP Core Power:
		UCD9222_ENA1 is for CVDD DSP core power
		plane control.
UCD9222_PG2	I	UCD9222 Power Good Indication for VCC1V0
		DSP Core Power: This signal indicates the
		VCC1V0 DSP core power is valid.
UCD9222_ENA2	0	UCD9222 Enable for VCC1V0 DSP Core Power:
		UCD9222_ENA2 is for VCC1V0 DSP core power
		plane control.
PGUCD9222	1	UCD9222 Power Good Indication: This signal
		indicates both the CVDD DSP and VCC1V0 DSP
		core power supplies are valid.
UCD9222_RST#	0	UCD9222 Reset: An active low signal will reset
		the UCD9222 device.
PM BUS: (RFU)		
PMBUS_CLK	0	PM Bus Clock: The FPGA provides the clock
		source on the PM bus.
PMBUS_DAT	1/0	PM Bus Data: A PM Bus slave device can
		receive data provided by the master (FPGA), or
		it can also provide data to the master (FPGA)
		via this signal line.
PMBUS_ALT	1	PM Bus Alert: The PM Bus device may notify
		the host (FPGA) via this signal if a fault or
		warning is detected.
PMBUS_CTL	0	PM Bus Control: This signal is used to turn the
	PU	device on and off in conjunction with
		UCD9222_ENA1 / UCD9222_ENA2 pins.
PHY Interface :		
PHY_INT#		Interrupt Request from 88E1111 PHY(RFU)

Pin Name IO	Type Description
PHY_RST# O	Reset to 88E1111 PHY: This signal is used to
	reset the 88E1111 PHY device. The PHY_RST#
	will be asserted during the active DSP_PORZ or
	DSP_RESETFULLz period. The PHY_RST# logic
	also can be configured by the DSP accessed
	register.
DSP SPI:	
DSP_SSPCS1 I	DSP SPI Chip Select 1: This signal is connected
	to the TMS320C6670 DSP SPISCS1 pin. The
	falling edge of the SSPCS1 from the DSP will
	initiate a transfer. If SSPCS1 is high, no data
	transfer can take place.
DSP_SSPCK I	DSP SPI Serial Clock: This signal is connected to
	the TMS320C6670 DSP SPICLK pin. The FPGA
	SPI bus clocks data in on the falling edge of
	SSPCK. Data transitions therefore occur on the
	rising edge of the clock.
DSP_SSPMISO O	DSP SPI Serial Data MISO : This signal is
	connected to the TMS320C6670 DSP SPIDIN
	pin. This signal is used for serial data transfers
	from the slave (FPGA) output to the master
	(DSP) input in the DSP_SSPCS1 asserted period.
DSP_SSPMOSI I	DSP SPI Serial Data MOSI: This signal is
	connected to the DSP SPIDOUT pin. This signal
	is used for serial data transfers from the master
	(DSP) output to the slave (FPGA) input.
RESET Buttons and Requests:	
FULL_RESET I	Full Reset Button Input: This button input is
	used to initiate a Full Reset event.
WARM_RESET I	Warm Reset Button Input: This button input is
	used to initiate a Warm Reset event.
COLD_RESET I	Cold Reset Button Input :
(RFU)	Reserved for Future Use (RFU).
FPGA_JTAG_RST#	FPGA JTAG Reset Input:
(RFU)	Reserved for Future Use (RFU).
TRGRSTZ	Reset Request from the DSP Emulator Header:
	A warm Reset sequence will be initiated if an
	active TRGRSTZ event is recognized by the
	FPGA.
DSP Boot & Device configuration	ions:
BM_GPIO[0: 15]	DSP Boot Mode Strap Configuration: These
	switch inputs are used to drive the DSP boot
	mode configuration during the EVM power up
	period.

Pin Name	IO Type	Description	
DSP_GPIO[0: 15]	1/0	DSP GPIO: In normal operation mode, these	
_		signals are not driven by the FPGA so that the	
		DSP can use them as GPIO pins. During the	
		EVM Power-on or during the RESETFULLz	
		asserted period, the FPGA will output the	
		BM_GPIO switch values to the DSP on these	
		pins so the DSP can latch the boot mode	
		configuration.	
DSP RESET & Interrupts Co	ontrol :		
DSP_CORESEL[0:2]	0	DSP Core Selection Bit:	
		The default value is 0000b and Register bits	
		define the state of these pins	
DSP_PACLKSEL	0	DSP PACLKSEL: This pin is used for the DSP	
		PASS clock selection setting. The logic of this	
		signal is derived from the BM_GPIO[13:11]	
		state or configured by the FPGA registers.	
FPGA_DSPCLKSEL	0	CORECLKSEL: RFU, Reserved for Future Use	
FPGA_EXTFRAMEEVENT	I	EXTFRAMEEVENT : RFU, Reserved for Future	
		Use	
DSP_LRESETNMIENZ	0	Latch Enable for DSP Local Reset and NMI	
		Inputs: The default value is 1b and a register	
		bit defines the state of this pin.	
DSP_NMIZ	0	DSP NMI.	
		The default value is 1b and unlocked a register	
		bit defines the state of this pin.	
DSP_LRESETZ	0	DSP Local Reset.	
		The default value is 1b and a register bit	
		defines the state of this pin.	
DSP_HOUT	I	DSP HOUT	
DSP_BOOTCOMPLETE	I	DSP Boot Complete Indication	
DSP_SYSCLKOUT	1	DSP System Clock Output	
DSP_PORZ	0	DSP Power-on Reset	
DSP_RESETFULLz	0	DSP Full Reset.	
DSP_RESETZ	0	DSP Reset	
FPGA Storage (RFU):			
FPGA_SPI_CS#	0	FPGA SPI Chip Select: (RFU)	
FPGA_SPI_SI	0	FPGA SPI Serial Data MOSI: (RFU)	
FPGA_SPI_SCK	0	FPGA SPI Clock Output: (RFU)	
FPGA_SPI_SO	1	FPGA SPI Serial Data MISO: (RFU)	
Telecom CLK :			
TCLKA[p/n]	I, Diff	TCLKA Different Clock Input Pairs	
		It's the Telecom reference clock from the AMC	
		backplane.	

Pin Name	IO Type	Description
TCLKB[p/n]	I, Diff	TCLKB Different Clock Input Pairs
		It's the Telecom reference clock from the AMC
		backplane.
TCLKC[p/n]	I, Diff	TCLKC Different Clock Input Pairs
		It's the Telecom reference clock from the AMC
		backplane.
TCLKD[p/n]	I, Diff	TCLKD Different Clock Input Pairs
		It's the Telecom reference clock from the AMC
		backplane.
DEBUG LED:		
DEBUG_LED[1:4]	0	Debug LED: The LEDs are used for debugging
		purposes only. It can be configured by the
		registers in the FPGA.
Miscellaneous:		
MAIN_48MHZ_CLK_R	I	FPGA Main Clock Source: A 48 MHz clock is
		used as the FPGA main clock source.
DSP_TIMI0	0	DSP Time 0 Clock : The FPGA provides the
		clock to DSP time 0. During the EVM power on
		or PORZ/RESETFULLZ asserted period, the
		FPGA will drive the PCIESSEN switch state to
		DSP for the boot configuration strapping. The
		FPGA drives 24MHz to DSP_TIMIO after the
		DSP Boot Configuration Strapping completed
DSP_TIMI1	0	DSP Timer 1 Clock: The FPGA provides the
		clock to DSP time 1. The FPGA drives 24MHz to
		DSP_TIMI1 after the DSP Boot Configuration
		Strapping completed.
DSP_VCL_1 (RFU)	I	DSP Smart Reflex I2C Clock
DSP_VD_1 (RFU)	1/0	DSP Smart Reflex I2C Clock
PCA9306_EN (RFU)	0	PCA9306 Enable: This signal is used to enable
		the DSP Smart Reflex I2C buffer function.
NAND_WP#	0	NAND Flash Write Protect: This signal is used
		to control the NAND flash write-protect
		function.
NOR_WP#	0	NOR Flash Write Protect: This signal is used to
		control the NOR flash write-protect function.
EEPROM_WP	0	EEPROM Write Protect: This signal is used to
		control the EEPROM write-protect function.
PCIESSEN	1	PCIE Subsystem Enable: This is used for the
		PCIESSEN switch input.
USER_DEFINE	1	User Defined Switch: This is reserved for the
		user defined switch input.

Pin Name	IO Type	Description
ICS557_SEL	0	PCIE clock pultipleaxor inputs selection: This
		pin is controlled by the register to select PCIE
		reference clock from the CDCE62005 or the
		AMC edge connector. The default is from the
		CDCE62005.
ICS557_PD#	0	PCIE clock pultipleaxor Power Down: This pin
		is used to control the ICS557-08 PD# pin, it's
		de-asserted after VCC1V5 valid.
ICS557_OE	0	PCIE clock pultipleaxor output enable: This pin
		enables the output of the ICS557-08.
VID_OE#	0	Smart-Reflex VID Enable: This pin enables the
		output of the Smart-Reflex VID from the DSP to
		the UCD9222.
FPGA JTAG TAP Control Po	rt:	
JTAG_FPGA_TCK	1	FPGA JTAG Clock Input
JTAG_FPGA_TDI	1	FPGA JTAG Data Input
JTAG_FPGA_TDO	0	FPGA JTAG Data Output
JTAG_FPGA_TMS	1	FPGA JTAG Mode Select Input
JTAG_FPGA_RST#	ı	FPGA JTAG Reset (RFU)

5.3 Sequence of operation

This section describes the FPGA sequence of operation on the EVM. It contains:

- 5.3.1 Power-on Sequence
- 5.3.2 Power down Sequence
- 5.3.3 Boot Configuration Timing
- 5.3.4 Boot Configuration Forced in I2C Boot

5.3.1 Power-on Sequence

The following section provides details of the FPGA Power-on sequence of operation.

- 1. After the EVM 3.3V and 1.2V auxiliary power rails (VCC3V3_AUX_PGOOD) are valid, the FPGA design code is loaded, the FPGA is ready for the Power-on sequence of ope ration. The 5V power is enabled when the POL of EVM supplied as well.
- 2. The FPGA starts to execute the Power-on sequence. Wait for 10 ms, the FPGA enable the 2.5V power.
- 3. Once the 5V and 2.5V voltages (VCC5_PGOOD and VCC2P5_PGOOD) are valid, wait for 5 ms (TBD), the FPGA asserts the UCD9222_ENA1 and UCD9222_ENA2 to enable the CVDD and VCC1V0 DSP core power.

- 4. After both the UCD9222_PG1 and UCD9222_PG2 are valid, wait for 5 ms, the FPGA enables the 1.8V power.
- 5. After the 1.8V voltage (VCC1P8_PGOOD) is valid, wait for 5 ms, the FPGA initialize the CDCE62005 clock generator 2 and CDCE62005 clock generator 3. Wait for 1 ms and the CDCE62005 clock generator 2 and CDCE62005 clock generator 3 PLL is locked, the FPGA initialize CDCE62002 clock generator 1. Wait for 1 ms and the FPGA enables the 1.5V power.
- 6. After the 1.5V voltage (VCC1V5_PGOOD) is valid, wait for 5 ms, the FPGA enables the 0.75V power and Level shift component output and initialize the ICS557.
- 7. After the 0.75V voltage (VCC0V75_PGOOD) is valid, wait for 5 ms, the FPGA de-assert the DSP_RESETz and DSP_LRESETz. Keep DSP_PORz and DSP_RESETFULLz asserted.
- 8. After the DSP_RESETz and DSP_LRESETz have de-asserted, wait for 5 ms and check the PLL locked bits in two CDCE62005s to make sure all clocks are stable, the FPGA de-asserts the DSP_PORz and keeps the DSP_RESETFULLz still being asserted. Wait for another 5 ms, the FPGA de-asserts the DSP_RESETFULLz. The FPGA will drive the BM_GPIO switches value to the DSP for the DSP boot mode configuration strapping during the period from the VCCOP75_PGOOD is valid to the RESETSTAT# being de-asserted. The FPGA will also drive the PCIESSEN switch value to DSP_TIMIO for the DSP boot configuration strapping.
- 9. Wait for RESETSTAT# signal from DSP to go from low to high. The EVM Power-on sequence is completed.

5.3.2 Power Off Sequence

Following section provides details of FPGA power off sequence of operation.

- 1. Once the system powers on, any power failure events (any one of power good signals de-asserted) will trigger the FPGA to proceed to the power off sequence.
- 2. Once any de-asserted Power Good signals have been detected by the FPGA, the FPGA will assert the DSP_PORz to DSP immediately.
- 3. Wait for 5 ms, the FPGA will disable all the system power rails , assert all the other DSP resets to DSP, lock the +1.8V output pins from the FPGA to the DSP and also assert power down signals to the CDCE62005 and the CDCE62002 clock generators.
- 4. FPGA remains in the power failure state until main 12V power is removed and restored.

5.3.3 Boot Configuration Timing

The boot configuration timing of the power-up and the RESETFULLz event are shown below.

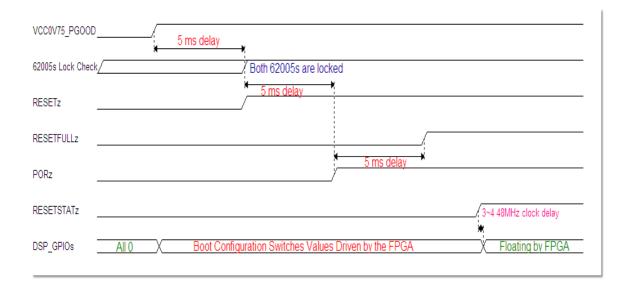


Figure: 5-1 Power-on Reset Boot Configuration Timing

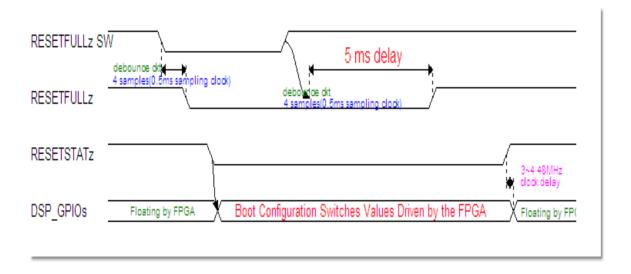


Figure: 5-2 Reset-Full Switch/Trigger Boot Configuration Timing

5.3.4 Boot Configuration Forced in I2C Boot

Note: This workaround is only needed with PG1.0 samples of the TMS320C6670 DSP.

For reliable PLL operation at boot-up, the FPGA will force the DSP to boot from the I2C by providing the boot configuration value as 0x0405 on the boot mode pins [12:0]. After the code in the I2C SEEPROM executes to initialize the PLLs, it will read the true values on the DIP switches from the registers in the FPGA and then boot as if the normal boot sequence had occurred.

The exception for the forced I2C boot is the emulation boot. The FPGA will not perform the I2C boot configuration override when the DIP switches have the following configuration: BOOTMODE[2:0] (GPIO[3:1]) = [000] and BOOTMODE[5:4] (GPIO[6:5]) = [00]. Therefore, the additional logic of the FPGA will allow the emulation boot to latch directly from the DIP switches.

5.4 Reset definition

5.4.1 Reset Behavior

- Power-on: The Power-on behavior includes initiating and sequencing the power sources, clock sources and then DSP startup. Please refer to the section 5.5.1 for detailed sequence and operations.
- Full Reset: The RESETFULLz is asserted low to the DSP. This causes RESETSTAT# to go
 low which triggers the boot configuration to be driven from the FPGA. Reset to the
 Marvell PHY is also asserted. POR# and RESET# to the DSP remain high. The power
 supplies and clocks operate without interruption. Please refer to the section 5.5.3 for
 detailed timing diagrams.
- Warm Reset: The RESETz is asserted low to the DSP. The PORz and RESETFULLz to the DSP remain high. The power supplies and clocks operate without interruption.

5.4.2 Reset Switches and Triggers

• **FULL_RESET** (RST_FULL1) – a logic low state with a low to high transition will trigger a Full Reset behavior event.

When the push button switch RST_FULL1 is pressed, FPGA on EVM will assert DSP's RESETFULL# input to issue a total reset of the DSP, everything on the DSP will be reset to its default state in response to this event, boot configurations will be latched and the ROM boot process will be initiated.

This is equivalent to a power cycle of the board but POR and will have following effects:

- * Reset DSP
- * Reset Gigabit Ethernet PHY
- * Reload boot parameters.
- * Protect the contents in the I2C EEPROM, NAND flash and SPI NOR flash.
- WARM_RESET (RST_WARM1) a logic low state with a low to high transition will trigger a warm reset behavior event.

When the push button Switch RST WARM1 is pressed, FPGA will assert a DSP RESET#

input, which will reset the DSP. Software can program this to be either hard or soft. Hard reset is the default which resets almost everything. Soft Reset will behave like Hard Reset except that PCIe MMRs, EMIF16 MMRs, DDR3 EMIF MMRs, and External Memory contents are retained.

Boot configurations are not latched by Warm Reset. Also, Warm Reset will not reset blocks supporting Reset Isolation when they are appropriately configured previously by application software. Warm Reset must be used to wake from low-power sleep and hibernation modes.

In the case of a Soft Reset, the clock logic or the power control logic of the peripherals are not affected, and, therefore, the enabled/disabled state of the peripherals is not affected. The following external memory contents are maintained

During a Soft Reset:

- **DDR3 MMRs**: The DDR3 Memory Controller registers are *not* reset. In addition, the DDR3 SDRAM memory content is retained if the user places the DDR3 SDRAM in self-refresh mode before invoking the soft reset.
- **PCIe MMRs**: The contents of the memory connected to the EMIFA are retained. The EMIFA registers are *not* reset.
- **COLD_RESET** (RST_COLD1) not used in current implementation.
- MMC_POR_IN_AMC# a logic low state with a low to high transition will trigger a
 Full Reset behavior event.
- MMC_WR_AMC# a logic low state with a low to high transition will trigger a warm reset behavior event.
- **TRGRSTz** a logic low state with a low to high transition on the Target Reset signal from emulation header that will trigger a warm reset behavior event.
- FPGA_JTAG_RST# not used in current implementation.

5.5 SPI protocol

This section describes the FPGA SPI bus protocol design specification for interfacing with TMS320C6670 DSP and CDCE62005 clock generators. It contains:

- 5.5.1 FPGA-DSP SPI Protocol
- 5.5.2 FPGA-CEDC62005(Clock Generator) SPI Protocol

5.5.1 FPGA-DSP SPI Protocol

The FPGA supports the simple write and read commands for the TMS320C6670 DSP to

access the FPGA configuration registers through the SPI interface. The FPGA SPI bus clocks data in on the falling edge of DSP SPI Clock. Data transitions therefore occur on the rising edge of the clock.

The figures below illustrate the DSP to FPGA SPI write operation.

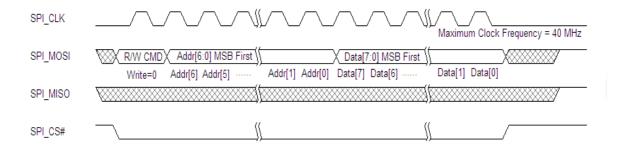


Figure 5-3: The SPI access form the TMS320C6670 to the FPGA (WRITE / high level)

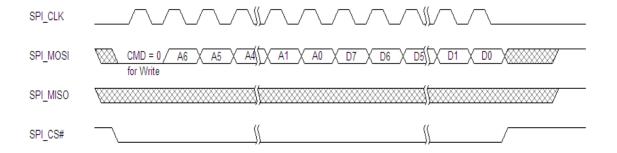


Figure 5-4: The SPI access form the TMS320C6670 to the FPGA (WRITE)

The figures below illustrate the DSP to FPGA SPI read operation.

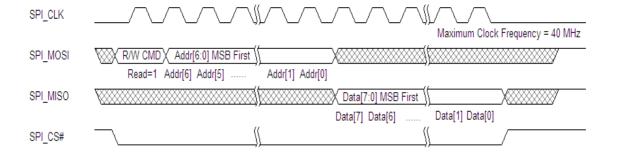


Figure 5-5: The SPI access form the TMS320C6670 to the FPGA (READ / high level)

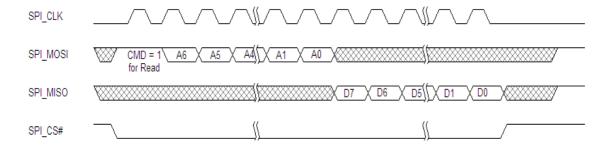


Figure 5-6: The SPI access form the TMS320C6670 to the FPGA (READ)

5.5.2 FPGA- CDCE62005(Clock Generator) SPI Protocol

The FPGA-Clock Generator SPI interface protocol is compatible to CDCE62005 SPI. The FPGA SPI bus clocks data in on the rising edge of DSP SPI Clock. Data transitions therefore occur on the falling edge of the clock.

The figure below illustrates a FPGA to CDCD62005 SPI write operation.

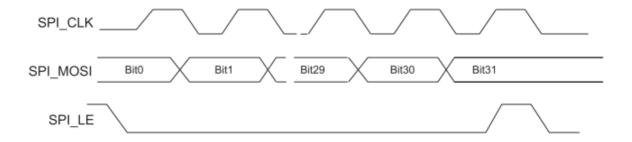


Figure 5-7: The SPI access form the FPGA to the CDCE62005 (WRITE)

The figure below illustrates a FPGA to CDCD62005 SPI read operation.

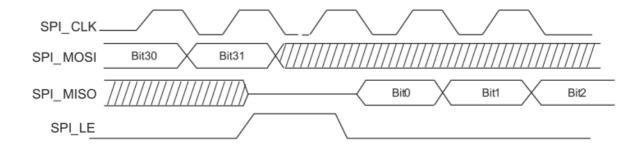


Figure 5-8: The SPI access form the FPGA to the CDCE62005 (READ)

5.6 FPGA Configuration Registers

The TMS320C6670 DSP communicates with the FPGA configuration registers through the SPI

interface. These registers are addressed by the memory mapped location and defined by the DSP SPI chip enable setting. The following tables list the FPGA configuration registers and the respective descriptions.

The TMS320C6670 DSP communicates with the FPGA configuration registers through the SPI interface. These registers are addressed by the memory mapped location and defined by the DSP SPI chip enable setting. The following tables list the FPGA configuration registers and the respective descriptions.

Table 5.2: TMDXEVM6670L EVM FPGA Memory Map

Memory Map Base Address	Memory Map Offset Address	Memory
DSP SPI Chip Select 1	0x00-0x4F	Configuration Registers
0x20BF0000-0x20BF03FF		
(TMS320C6670 DSP SPI		
Memory Map Address)		

5.6.1 FPGA Configuration Registers Summary

Table 5.3: FPGA Configuration Registers Summary

Address Offset	Definition	Attribute (R/W) (RO: Read-Only)	Default Value
00h	FPGA Device ID (Low Byte)	RO	05h
01h	FPGA Device ID (High Byte)	RO	80h
02h	FPGA Revision ID (Low Byte)	RO	**
03h	FPGA Revision ID (High Byte)	RO	00h*
04h	BM GPI Status (Low Byte)	RO	
05h	BM GPI Status (High Byte)	RO	
06h	DSP GPI Status (Low Byte)	RO	
07h	DSP GPI status (High Byte)	RO	
08h	Debug LED	R/W	00h
09h	MMC Control	RO	
0Ah	PHY Control	R/W	03h
OBh	Reset Buttons Status	RO	00h
0Ch	Miscellaneous - 1	R/W	1Ch
0Dh	Miscellaneous - 2	RO	
0Eh	FPGA FW Update SPI Interface	R/W	00h
	Control Register		
0Fh	Scratch Register	R/W	00h
10h	CLK-GEN 2 Control Register	R/W	00h
11h	CLK-GEN 2 Interface Clock Setting	R/W	03h
13h~12h	Reserved		Os
14h	CLK-GEN 2 Command Byte 0	R/W	00h
15h	CLK-GEN 2 Command Byte 1	R/W	00h

Address Offset	Definition	Attribute (R/W) (RO: Read-Only)	Default Value	
16h	CLK-GEN 2 Command Byte 2	R/W	00h	
17h	CLK-GEN 2 Command Byte 3	R/W	00h	
18h	CLK-GEN 2 Read Data Byte 0	RO	00h	
19h	CLK-GEN 2 Read Data Byte 1	RO	00h	
1Ah	CLK-GEN 2 Read Data Byte 2	RO	00h	
1Bh	CLK-GEN 2 Read Data Byte 3	RO	00h	
1Fh~1Ch	Reserved		Os	
20h	CLK-GEN 3 Control Register	R/W	00h	
21h	CLK-GEN 3 Interface Clock Setting	R/W	03h	
23h~22h	Reserved		Os	
24h	CLK-GEN 3 Command Byte 0	R/W	00h	
25h	CLK-GEN 3 Command Byte 1	R/W	00h	
26h	CLK-GEN 3 Command Byte 2	R/W	00h	
27h	CLK-GEN 3 Command Byte 3	R/W	00h	
28h	CLK-GEN 3 Read Data Byte 0	RO	00h	
29h	CLK-GEN 3 Read Data Byte 1	RO	00h	
2Ah	CLK-GEN 3 Read Data Byte 2	RO	00h	
2Bh	CLK-GEN 3 Read Data Byte 3	RO	00h	
2Fh~2Ch	Reserved		0s	
3Fh~30h	PM Bus (RFU)	R/W	Os	
40h	CLK-GEN 1 Control Register	R/W	00h	
41h	CLK-GEN 1 Interface Clock Setting	R/W	03h	
43h~42h	Reserved		Os	
44h	CLK-GEN 1 Command Byte 0	R/W	00h	
45h	CLK-GEN 1 Command Byte 1	R/W	00h	
46h	CLK-GEN 1 Command Byte 2	R/W	00h	
47h	CLK-GEN 1 Command Byte 3	R/W	00h	
48h	CLK-GEN 1 Read Data Byte 0	RO	00h	
49h	CLK-GEN 1 Read Data Byte 1	RO	00h	
4Ah	CLK-GEN 1 Read Data Byte 2	RO	00h	
4Bh	CLK-GEN 1 Read Data Byte 3	RO	00h	
4Fh~4Ch	Reserved		Os	
50h	ICS 557 Clock Select Control Register	R/W	00h	
Note: "*" means the value may be changed in the future FPGA FW update release.				

5.6.2 FPGA Configuration Registers Descriptions

Register Address: SPI Base + 00h

Register Name : FPGA Device ID (Low Byte) Register

Default Value: 05h Attribute: Read Only

Bit	Description	Read/Write
7-0	FPGA Device ID (Low Byte)	
	This offset 01h field combined with this field identifies the particular device. This identifier is allocated by the FPGA design	RO
	team.	

Register Address: SPI Base + 01h

Register Name : FPGA Device ID (High Byte) Register

Default Value: 80h Attribute: Read Only

Bit	Description	Read/Write
7-0	FPGA Device ID (High Byte)	
	This field combined with the offset 00h field identifies the	RO
	particular device. This identifier is allocated by the FPGA design	KO
	team.	

Register Address : SPI Base + 02h

Register Name: FPGA Revision ID (Low Byte) Register

Default Value: **

Attribute: Read Only

Bit	Description	Read/Write
7-0	FPGA Revision ID (Low Byte)	
	This offset 03h register combined with this register specifies the	RO
	FPGA device specific revision identifier. The value may be	KO
	changed in the future FPGA FW update release.	

Register Address : SPI Base + 03h

Register Name: FPGA Revision ID (High Byte) Register

Default Value: 00h* Attribute: Read Only

Bit	Description	Read/Write
7-0	FPGA Revision ID (High Byte)	
	This register combined with the offset 02h register specifies the	DO.
	FPGA device specific revision identifier. The value may be	RO
	changed in the future FPGA FW update release.	

Register Address : SPI Base + 04h

Register Name: BM GPI Status (07-00 Low Byte) Register

Default Value: ----

Bit	Description	Read/Write
0	BM GPIO 00: This bit reflects the state of the BM general	
	purpose input signal GPIO 00 and writes will have no effect.	RO
	0: BM GPIO 00 state is low	
	1: BM GPIO 00 state is high	
1	BM GPIO 01: This bit reflects the state of the BM general	RO
	purpose input signal GPIO 01 and writes will have no effect.	

	0: BM GPIO 01 state is low	
	1: BM GPIO 01 state is high	
2	BM GPIO 02: This bit reflects the state of the BM general	
	purpose input signal GPIO 02 and writes will have no effect.	RO
	0: BM GPIO 02 state is low	KU
	1: BM GPIO 02 state is high	
3	BM GPIO 03: This bit reflects the state of the BM general	
	purpose input signal GPIO 03 and writes will have no effect.	RO
	0: BM GPIO 03 state is low	RO
	1: BM GPIO 03 state is high	
4	BM GPIO 04: This bit reflects the state of the BM general	
	purpose input signal GPIO 04 and writes will have no effect.	RO
	0: BM GPIO 04 state is low	KO
	1: BM GPIO 04 state is high	
5	BM GPIO 05: This bit reflects the state of the BM general	
	purpose input signal GPIO 05 and writes will have no effect.	RO
	0: BM GPIO 05 state is low	NO NO
	1: BM GPIO 05 state is high	
6	BM GPIO 06: This bit reflects the state of the BM general	
	purpose input signal GPIO 06 and writes will have no effect.	RO
	0: BM GPIO 06 state is low	NO NO
	1: BM GPIO 06 state is high	
7	BM GPIO 07: This bit reflects the state of the BM general	
	purpose input signal GPIO 07 and writes will have no effect.	RO
	0: BM GPIO 07 state is low	INO
	1: BM GPIO 07 state is high	

Register Address : **SPI Base + 05h**

Register Name : BM GPI (15-08 High Byte) Status Register

Default Value: ----

Bit	Description	Read/Write
0	BM GPIO 08: This bit reflects the state of the BM general purpose input signal GPIO 08 and writes will have no effect. 0: BM GPIO 08 state is low 1: BM GPIO 08 state is high	RO
1	BM GPIO 09: This bit reflects the state of the BM general purpose input signal GPIO 09 and writes will have no effect. 0: BM GPIO 09 state is low 1: BM GPIO 09 state is high	RO
2	BM GPIO 10: This bit reflects the state of the BM general purpose input signal GPIO 10 and writes will have no effect. 0: BM GPIO 10 state is low 1: BM GPIO 10 state is high	RO
3	BM GPIO 11: This bit reflects the state of the BM general purpose input signal GPIO 11 and writes will have no effect. 0: BM GPIO 11 state is low	RO

	1: BM GPIO 11 state is high	
4	BM GPIO 12: This bit reflects the state of the BM general	
	purpose input signal GPIO 12 and writes will have no effect.	RO
	0: BM GPIO 12 state is low	KO
	1: BM GPIO 12 state is high	
5	BM GPIO 13: This bit reflects the state of the BM general	
	purpose input signal GPIO 13 and writes will have no effect.	RO
	0: BM GPIO 13 state is low	KO
	1: BM GPIO 13 state is high	
6	BM GPIO 14: This bit reflects the state of the BM general	
	purpose input signal GPIO 14 and writes will have no effect.	RO
	0: BM GPIO 14 state is low	KO
	1: BM GPIO 14 state is high	
7	BM GPIO 15: This bit reflects the state of the BM general	
	purpose input signal GPIO 15 and writes will have no effect.	RO
	0: BM GPIO 15 state is low	NO
	1: BM GPIO 15 state is high	

Register Address : **SPI Base + 06h**

Register Name : DSP GPI (07-00 Low Byte) Register

Default Value: ----

Bit	Description	Read/Write
0	DSP GPIO 00: This bit reflects the state of the DSP general	
	purpose input signal GPIO 00 and writes will have no effect.	RO
	0: DSP GPIO 00 state is low	KO
	1: DSP GPIO 00 state is high	
1	DSP GPIO 01: This bit reflects the state of the DSP general	
	purpose input signal GPIO 01 and writes will have no effect.	RO
	0: DSP GPIO 01 state is low	KO
	1: DSP GPIO 01 state is high	
2	DSP GPIO 02: This bit reflects the state of the DSP general	
	purpose input signal GPIO 02 and writes will have no effect.	RO
	0: DSP GPIO 02 state is low	KO
	1: DSP GPIO 02 state is high	
3	DSP GPIO 03: This bit reflects the state of the DSP general	
	purpose input signal GPIO 03 and writes will have no effect.	RO
	0: DSP GPIO 03 state is low	I.O
	1: DSP GPIO 03 state is high	
4	DSP GPIO 04: This bit reflects the state of the DSP general	
	purpose input signal GPIO 04 and writes will have no effect.	RO
	0: DSP GPIO 04 state is low	I.O
	1: DSP GPIO 04 state is high	
5	DSP GPIO 05: This bit reflects the state of the DSP general	
	purpose input signal GPIO 05 and writes will have no effect.	RO
	0: DSP GPIO 05 state is low	INO INO
	1: DSP GPIO 05 state is high	

6	DSP GPIO 06: This bit reflects the state of the DSP general purpose input signal GPIO 06 and writes will have no effect. 0: DSP GPIO 06 state is low 1: DSP GPIO 06 state is high	RO
7	DSP GPIO 07: This bit reflects the state of the DSP general purpose input signal GPIO 07 and writes will have no effect. 0: DSP GPIO 07 state is low 1: DSP GPIO 07 state is high	RO

Register Address : **SPI Base + 07h**

Register Name : DSP GPI (15-08 High Byte) Status Register

Default Value: 00h Attribute: Read Only

Attribute.	Read Offiy	<u> </u>
Bit	Description	Read/Write
0	DSP GPIO 08: This bit reflects the state of the DSP general	
	purpose input signal GPIO 08 and writes will have no effect.	RO
	0: DSP GPIO 08 state is low	I.O
	1: DSP GPIO 08 state is high	
1	DSP GPIO 09: This bit reflects the state of the DSP general	
	purpose input signal GPIO 09 and writes will have no effect.	RO
	0: DSP GPIO 09 state is low	I.O
	1: DSP GPIO 09 state is high	
2	DSP GPIO 10: This bit reflects the state of the DSP general	
	purpose input signal GPIO 10 and writes will have no effect.	RO
	0: DSP GPIO 10 state is low	I.O
	1: DSP GPIO 10 state is high	
3	DSP GPIO 11: This bit reflects the state of the DSP general	
	purpose input signal GPIO 11 and writes will have no effect.	RO
	0: DSP GPIO 11 state is low	INO.
	1: DSP GPIO 11 state is high	
4	DSP GPIO 12: This bit reflects the state of the DSP general	
	purpose input signal GPIO 12 and writes will have no effect.	RO
	0: DSP GPIO 12 state is low	INO.
	1: DSP GPIO 12 state is high	
5	DSP GPIO 13: This bit reflects the state of the DSP general	
	purpose input signal GPIO 13 and writes will have no effect.	RO
	0: DSP GPIO 13 state is low	INO.
	1: DSP GPIO 13 state is high	
6	DSP GPIO 14: This bit reflects the state of the DSP general	
	purpose input signal GPIO 14 and writes will have no effect.	RO
	0: DSP GPIO 14 state is low	INO.
	1: DSP GPIO 14 state is high	
7	DSP GPIO 15: This bit reflects the state of the DSP general	
	purpose input signal GPIO 15 and writes will have no effect.	RO
	0: DSP GPIO 15 state is low	NO.
	1: DSP GPIO 15 state is high	

Register Address : SPI Base + 08h
Register Name : Debug LED Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
0	DEBUG_LED 1: This bit can be updated by the DSP software to drive a high or low value on the debug LED 0 pin.	
	0: DEBUG_LED 1 drives low	R/W
	1: DEBUG_LED 1 drives high	
1	DEBUG_LED 2: This bit can be updated by the DSP software to	
	drive a high or low value on the debug LED 1 pin.	R/W
	0: DEBUG_LED 2 drives low	11,7 00
	1: DEBUG_LED 2 drives high	
2	DEBUG_LED 3: This bit can be updated by the DSP software to	
	drive a high or low value on the debug LED 2 pin	R/W
	0: DEBUG_LED 3 drives low	11,700
	1: DEBUG_LED 3 drives high	
3	DEBUG_LED 4: This bit can be updated by the DSP software to	
	drive a high or low value on the debug LED 3 pin	R/W
	0: DEBUG_LED 4 drives low	IN/ VV
	1: DEBUG_LED 4 drives high	
7-4	Reserved	RO

Register Address : **SPI Base + 09h**

Register Name : MMC Control Register

Default Value: ----

Bit	Description	Read/Write
0	MMC_DETECT#: This bit reflects the MMC_DETECT# state and it is used by the MMC to indicate the AMC chassis insertion status. 0: MMC_DETECT# state is low to indicate that the EVM is inserted into the AMC chassis. 1: MMC_DETECT# state is high to indicate that the EVM is not inserted into the AMC chassis.	RO
1	MMC_RESETSTAT#: This bit reflects the DSP RESETSTAT# state and the FPGA will drive the same logic value on the MMC_RESETSTAT# pin (to MMC). 0: DSP RESETSTAT# state is low and the FPGA drives MMC_RESETSTAT# low to MMC 1: DSP RESETSTAT# state is high and the FPGA drives MMC_RESETSTAT# state is high and the FPGA drives	RO
2	MMC_POR_IN_AMC#: This bit reflects the MMC_POR_IN_AMC# state and it is used by the MMC to trigger a Power-on sequence & reset event. 0: MMC_POR_IN_AMC# state is low to trigger a Power-on sequence & reset event. 1: MMC_POR_IN_AMC# state is high and the FPGA stays in	RO

	current state.	
3	MMC_WR_AMC#: This bit reflects the MMC_WR_AMC# state and it is used by the MMC to trigger a warm reset event. 0: MMC_WR_AMC# state is low to trigger a warm reset event. 1: MMC_WR_AMC# state is high and the FPGA stays in current state	RO
4	MMC_BOOTCOMPLETE: This bit reflects the DSP_BOOTCOMPLETE state and the FPGA will drive the same logic value on the MMC_BOOTCOMPLETE pin (to MMC). 0: DSP_BOOTCOMPLETE state is low and the FPGA drives MMC_BOOTCOMPLETE low to MMC 1: DSP_BOOTCOMPLETE state is high and the FPGA drives MMC_BOOTCOMPLETE high to MMC	RO
7-5	Reserved	RO

Register Address : SPI Base + 0Ah
Register Name : PHY Control Register

Default Value: 03h

Attribute: Read/Write

Bit	Description	Read/Write
0	PHY_INT#: This bit reflects the PHY_INT# state.	
	0: PHY_INT# state is low.	RO
	1: PHY_INT# state is high.	
1	PHY_RST#: This bit can be updated by the DSP software to drive	
	a high or low value on the PHY_RST# pin	R/W
	0: PHY_RST# drives low	
	1: PHY_RST# drives high	
7-3	Reserved	RO

Register Address : **SPI Base + 0Bh**

Register Name : Reset Button Status Register

Default Value: ----

Bit	Description	Read/Write
0	FULL_RESET button status: This bit reflects the FULL_RESET button state. This button is used to request a power full reset sequence to DSP. A logic Low to High transition on this button signal will complete the FPGA FULL_RESET sequence with a specified delay time. 0: FULL_RESET button state is low 1: FULL_RESET button state is high	RO
1	WARM_RESET button status (RFU): This bit reflects the WARM _RESET button state. This button is used to request a warm reset sequence to DSP. A logic Low to High transition on this button signal will complete the FPGA WARM_RESET sequence with a specified delay time. 0: WARM_RESET button state is low	RO

	1: WARM_RESET button state is high	
2	COLD_RESET button status (RFU): This bit reflects the COLD	
	_RESET button state. This button is used to request a hard reset	
	sequence to DSP. A logic Low to High transition on this button	
	signal will complete the FPGA HARD_RESET sequence with a	RO
	specified delay time.	
	0: COLD_RESET button state is low	
	1: COLD_RESET button state is high	
3	Reserved	RO
4	DSP_RESETSTAT#: This bit reflects the DSP_RESETSTAT# state.	
	0: DSP_RESETSTAT# state is low	RO
	1: DSP_RESETSTAT# state is high	
5	TRGRSTZ: This bit reflects the TRGRSTZ state.	
	0: TRGRSTZ state is low	RO
	1: TRGRSTZ state is high	
6	PCIESSEN: This bit reflects the PCIESSEN switch state.	
	0: PCIESSEN state is low	RO
	1: PCIESSEN state is high	
7	User Defined Switch: This bit reflects the User_Define_Switch	
	state.	RO
	0: User Defined Switch state is low	NO
	1: User Defined Switch state is high	

Register Address : **SPI Base + 0Ch**

Register Name : Miscellaneous - 1 Register

Default Value: 1Ch

Attibute.	Read/ Write	
Bit	Description	Read/Write
1-0	Reserved	R/W
2	NAND_WP#: This bit can be updated by the DSP software to drive a high or low value on the NAND_WP# pin (RFU) 0: NAND_WP# drives low 1: NAND_WP# drives high	R/W
3	XDS560_IL Enable Control: 0: XDS560 mezzanine card is disabled. 1: XDS560 mezzanine card is enabled.	R/W
4	NOR_WP#: This bit can be updated by the DSP software to drive a high or low value on the NOR_WP# pin (RFU) 0: NOR_WP# drives low 1: NOR_WP# drives high	R/W
5	EEPROM_WP: This bit can be updated by the DSP software to drive a high or low value on the EEPROM_WP pin (RFU) 0: EEPROM_WP drives low 1: EEPROM_WP drives high	R/W
6	PCA9306_EN: This bit can be updated by the DSP software to drive a high or low value on the PCA9306_EN pin (RFU) 0: PCA9306_EN drives low	R/W

	1: PCA9306_EN drives high	
7	Reserved	RO

Register Address : **SPI Base + 0Dh**

Register Name : Miscellaneous - 2 Register

Default Value: ----

Attribute: Read Only

Bit	Description	Read/Write
0	FPGA FW Update SPI Interface Enable Status: This bit reflects the	
	FPGA FW Update SPI Interface Enable status. The FPGA FW	
	Update SPI interface could be enabled/disabled through the	
	offset 0Eh register.	
	0: FPGA FW update SPI interface is disabled.	RO
	1: FPGA FW update SPI interface is enabled.	KO
	The DSP_GPIO[12] is mapped to FPGA_FW_SPI_CLK.	
	The DSP_GPIO[13] is mapped to FPGA_FW_SPI_CS#.	
	The DSP_GPIO[14] is mapped to FPGA_FW_SPI_MOSI.	
	The DSP_GPIO[15] is mapped to FPGA_FW_SPI_MISO.	
2	DSP_HOUT status: This bit reflects the DSP_HOUT signal state. 0:	
	DSP_HOUT state is low	RO
	1: DSP_HOUT state is high	
3	DSP_SYSCLKOUT status: This bit reflects the DSP_SYSCLKOUT	
	signal state.	RO
	0: DSP_SYSCLKOUT state is low	KU
	1: DSP_SYSCLKOUT state is high	
7-4	Reserved	RO

Register Address : SPI Base + 0Eh

Register Name : FPGA FW Update SPI Interface Control Register

Default Value: ----

Attribute: Read/Write

Bit	Description	Read/Write
7-0	FPGA FW Update SPI Interface Enable Control: These bits are	
	used to enable/disable the FPGA FW Update SPI Interface. If the	
	value of this register be set to 68h, the FPGA FW Update SPI	
	interface would be enabled. All the other values set to this	
	register would disable the FPGA FW Update SPI interface.	
	68h: FPGA FW update SPI interface is enabled.	R/W
	Others: FPGA FW update SPI interface is disabled.	
	The DSP_GPIO[12] is mapped to FPGA_FW_SPI_CLK.	
	The DSP_GPIO[13] is mapped to FPGA_FW_SPI_CS#.	
	The DSP_GPIO[14] is mapped to FPGA_FW_SPI_MOSI.	
	The DSP_GPIO[15] is mapped to FPGA_FW_SPI_MISO.	

Register Address : SPI Base + 0Fh
Register Name : Scratch Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
7-0	Scratch Data	R/W

Register Address : SPI Base + 10h

Register Name: **CLK-GEN 2 Control Register**

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
0	Initiate a data transfer via the SPI bus to update the SPI	
	command to CDCE62005 Clock Generator #2	R/W
	0: Idle state	K/ VV
	1: Write 1 to perform the SPI command update process.	
1	The BUSY status indication for the CDCE62005 Clock Generator	
	#2 SPI bus	
	0: The SPI bus for the CDCE62005 Clock Generator #2 is idle.	RO
	1: The SPI bus for the CDCE62005 Clock Generator #2 is busy and	
	a SPI command is processing	
7-2	Reserved	RO

Register Address: SPI Base + 11h

Register Name: **CLK-GEN 2 Interface Clock Setting Register**

Default Value: 03h

Read/Write Attribute:

Bit	Description	Read/Write
7-0	This register is a clock divider setting to adjust the interface	
	clock for the CDCE62005 Clock Generator #2 SPI bus.	
	00: CDCE62005 #2 SPI Clock = 12MHz (= 48 / 4)	
	01: CDCE62005 #2 SPI Clock = 12MHz (= 48 / 4)	
	02: CDCE62005 #2 SPI Clock = 8 MHz (= 48 / 6)	
	03: CDCE62005 #2 SPI Clock = 6 MHz (= 48 / 8)	R/W
	04: CDCE62005 #2 SPI Clock = 4.8 MHz (= 48 /10)	
	05: CDCE62005 #2 SPI Clock = 4 MHz (= 48 /12)	
	06: CDCE62005 #2 SPI Clock = 3.42 MHz (= 48 / 14)	
	X: CDCE62005 #2 SPI Clock = 48 MHz /((X+1)*2) if X != 0	

Register Address : SPI Base + 12h ~ 13h

Register Name: Reserved

Register Address : SPI Base + 14h

CLK-GEN 2 Command Byte 0 Register Register Name:

Default Value: 00h

Bit	Description	Read/Write
7-0	This register specifies the update SPI command byte 0 to the	R/W
	CDCE62005 Clock Generator #2	K/VV

3-0: SPI command address field bit 3 to bit 0	
7-4: SPI command data field bit 3 to bit 0	

Register Address : **SPI Base + 15h**

Register Name : CLK-GEN 2 Command Byte 1 Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
7-0	This register specifies the update SPI command byte 1 to the	
	CDCE62005 Clock Generator #2	R/W
	7-0: SPI command data field bit 11 to bit 4	

Register Address: SPI Base + 16h

Register Name: CLK-GEN 2 Command Byte 2 Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
7-0	This register specifies the update SPI command byte 2 to the	
	CDCE62005 Clock Generator #2	R/W
	7-0: SPI command data field bit 19 to bit12	

Register Address: SPI Base + 17h

Register Name: CLK-GEN 2 Command Byte 3 Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
7-0	This register specifies the update SPI command byte 3 to the	
	CDCE62005 Clock Generator #2	R/W
	7-0: SPI command data field bit 27 to bit 20	

Register Address : SPI Base + 18h

Register Name: CLK-GEN 2 Read Data Byte 0 Register

Default Value: 00h Attribute: Read Only

Bit	Description	Read/Write
7-0	This register reflects the read back data byte 0 from the	
	CDCE62005 Clock Generator #2 for responding a host SPI Read	
	Command.	
	3-0: The SPI read back register address [3-0] for a SPI Read	RO
	Command	
	7-4: The SPI read back data bit 3 to bit 0 for a SPI Read	
	Command.	

Register Address: SPI Base + 19h

Register Name: CLK-GEN 2 Read Data Byte 1 Register

Default Value: 00h Attribute: Read Only

Bit	Description	Read/Write
7-0	This register reflects the read back data byte 1 from the	
	CDCE62005 Clock Generator #2 for responding a host SPI Read	
	Command.	RO
	7-0: The SPI read back data bit 11 to bit 4 for a SPI Read	
	Command.	

Register Address: SPI Base + 1Ah

Register Name: CLK-GEN 2 Read Data Byte 2 Register

Default Value: 00h Attribute: Read Only

Bit	Description	Read/Write
7-0	This register reflects the read back data byte 1 from the	
	CDCE62005 Clock Generator #2 for responding a host SPI Read	
	Command.	RO
	7-0: The SPI read back data bit 19 to bit 12 for a SPI Read	
	Command.	

Register Address: SPI Base + 1Bh

Register Name : CLK-GEN 2 Read Data Byte 3 Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
7-0	This register reflects the read back data byte 1 from the	
	CDCE62005 Clock Generator #2 for responding a host SPI Read	
	Command.	RO
	7-0: The SPI read back data bit 27 to bit 20 for a SPI Read	
	Command.	

Register Address: SPI Base + 1Ch ~ 1Fh

Register Name : Reserved

Register Address: SPI Base + 20h

Register Name : CLK-GEN 3 Control Register

Default Value: 00h

Bit	Description	Read/Write
0	Initiate a data transfer via the SPI bus to update the SPI	
	command to CDCE62005 Clock Generator #3	R/W
	0: Idle state	K/ VV
	1: Write 1 to perform the SPI command update process.	
1	The BUSY status indication for the CDCE62005 Clock Generator	
	#3 SPI bus	
	0: The SPI bus for the CDCE62005 Clock Generator #3 is idle.	RO
	1: The SPI bus for the CDCE62005 Clock Generator #3 is busy and	
	a SPI command is processing.	
7-2	Reserved	RO

Register Address: SPI Base + 21h

Register Name : CLK-GEN 3 Interface Clock Setting Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
7-0	This register is a clock divider setting to adjust the interface	
	clock for the CDCE62005 Clock Generator #3 SPI bus.	
	00: CDCE62005 #3 SPI Clock = 12MHz (= 48 / 4)	
	01: CDCE62005 #3 SPI Clock = 12MHz (= 48 / 4)	
	02: CDCE62005 #3 SPI Clock = 8 MHz (= 48 / 6)	
	03: CDCE62005 #3 SPI Clock = 6 MHz (= 48 / 8)	R/W
	04: CDCE62005 #3 SPI Clock = 4.8 MHz (= 48 /10)	
	05: CDCE62005 #3 SPI Clock = 4 MHz (= 48 /12)	
	06: CDCE62005 #3 SPI Clock = 3.42 MHz (= 48 / 14)	
	X: CDCE62005 #3 SPI Clock = 48 MHz /((X+1)*2) if X != 0	

Register Address : SPI Base + 22h ~ 23h

Register Name : Reserved

Register Address: SPI Base + 24h

Register Name : CLK-GEN 3 Command Byte 0 Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
7-0	This register specifies the update SPI command byte 0 to the	
	CDCE62005 Clock Generator #3	R/W
	3-0: SPI command address field bit 3 to bit 0	K/ VV
	7-4: SPI command data field bit 3 to bit 0	

Register Address : SPI Base + 25h

Register Name: CLK-GEN 3 Command Byte 1 Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
7-0	This register specifies the update SPI command byte 1 to the	
	CDCE62005 Clock Generator #3	R/W
	7-0: SPI command data field bit 11 to bit 4	

Register Address: SPI Base + 26h

Register Name: CLK-GEN 3 Command Byte 2 Register

Default Value: 00h

Bit	Description	Read/Write
7-0	This register specifies the update SPI command byte 2 to the	D/M
	CDCE62005 Clock Generator #3	R/W

7-0: SPI command data field bit 19 to bit 12	
--	--

Register Address: SPI Base + 27h

Register Name: CLK-GEN 3 Command Byte 3 Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
7-0	This register specifies the update SPI command byte 3 to the	
	CDCE62005 Clock Generator #3	R/W
	7-0: SPI command data field bit 27 to bit 20	

Register Address: SPI Base + 28h

Register Name: CLK-GEN 3 Read Data Byte 0 Register

Default Value: 00h Attribute: Read Only

Bit	Description	Read/Write
7-0	This register reflects the read back data byte 0 from the	
	CDCE62005 Clock Generator #3 for responding to a host SPI	
	Read Command.	
	3-0: The SPI read back register address [3-0] for a SPI Read	RO
	Command	
	7-4: The SPI read back data bit 3 to bit 0 for a SPI Read	
	Command.	

Register Address: SPI Base + 29h

Register Name: CLK-GEN 3 Read Data Byte 1 Register

Default Value: 00h Attribute: Read Only

Bit	Description	Read/Write
7-0	This register reflects the read back data byte 1 from the	
	CDCE62005 Clock Generator #3 for responding to a host SPI	
	Read Command.	RO
	7-0: The SPI read back data bit 11 to bit 4 for a SPI Read	
	Command.	

Register Address : SPI Base + 2Ah

Register Name : CLK-GEN 3 Read Data Byte 2 Register

Default Value: 00h Attribute: Read Only

Bit	Description	Read/Write
7-0	This register reflects the read back data byte 1 from the	
	CDCE62005 Clock Generator #3 for responding to a host SPI	
	Read Command.	RO
	7-0: The SPI read back data bit 19 to bit 12 for a SPI Read	
	Command.	

Register Address : SPI Base + 2Bh

Register Name: CLK-GEN 3 Read Data Byte 3 Register

Default Value: 00h Attribute: Read/Write

Bit	Description	Read/Write
7-0	This register reflects the read back data byte 1 from the	
	CDCE62005 Clock Generator #3 for responding to a host SPI	
	Read Command.	RO
	7-0: The SPI read back data bit 27 to bit 20 for a SPI Read	
	Command.	

Register Address: SPI Base + 2Ch ~ 2Fh

Register Name: Reserved

Register Address : SPI Base + 30h ~ 3Fh(RFU)
Register Name : PM Bus Control Register

Default Value: 00h Attribute: Read/Write

Bit	Description	Read/Write
7-0	RFU	R/W

Register Address: SPI Base + 40h

Register Name: CLK-GEN 1 Control Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
0	Initiate a data transfer via the SPI bus to update the SPI	
	command to CDCE62002 Clock Generator #1	R/W
	0: Idle state	N/ VV
	1: Write 1 to perform the SPI command update process.	
1	The BUSY status indication for the CDCE62002 Clock Generator	
	#1 SPI bus	
	0: The SPI bus for the CDCE62002 Clock Generator #1 is idle.	RO
	1: The SPI bus for the CDCE62002 Clock Generator #1 is busy and	
	a SPI command is processing	
7-2	Reserved	RO

Register Address: SPI Base + 41h

Register Name : CLK-GEN 1 Interface Clock Setting Register

Default Value: 03h

Bit	Description	Read/Write
7-0	This register is a clock divider setting to adjust the interface	
	clock for the CDCE62002 Clock Generator #1 SPI bus.	
	00: CDCE62002 SPI Clock = 12MHz (= 48 / 4)	R/W
	01: CDCE62002 SPI Clock = 12MHz (= 48 / 4)	K/VV
	02: CDCE62002 SPI Clock = 8 MHz (= 48 / 6)	
	03: CDCE62002 SPI Clock = 6 MHz (= 48 / 8)	

04 CDCFC2002 CDLCL - 4 0 AUL / 40 /40 \	
04: CDCE62002 SPI Clock = 4.8 MHz (= 48 /10)	
05: CDCE62002 SPI Clock = 4 MHz (= 48 /12)	
06: CDCE62002 SPI Clock = 3.42 MHz (= 48 / 14)	
X: CDCE62002 SPI Clock = 48 MHz /((X+1)*2) if X != 0	

Register Address : SPI Base + 42h ~ 43h

Register Name: Reserved

Register Address: SPI Base + 44h

Register Name : CLK-GEN 1 Command Byte 0 Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
7-0	This register specifies the update SPI command byte 0 to the	
	CDCE62002 Clock Generator #1	R/W
	3-0: SPI command address field bit 3 to bit 0	K/ VV
	7-4: SPI command data field bit 3 to bit 0	

Register Address: SPI Base + 45h

Register Name : CLK-GEN 1 Command Byte 1 Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
7-0	This register specifies the update SPI command byte 1 to the	
	CDCE62002 Clock Generator #1	R/W
	7-0: SPI command data field bit 11 to bit 4	

Register Address: SPI Base + 46h

Register Name: CLK-GEN 1 Command Byte 2 Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
7-0	This register specifies the update SPI command byte 2 to the	
	CDCE62002 Clock Generator #1	R/W
	7-0: SPI command data field bit 19 to bit12	

Register Address: SPI Base + 47h

Register Name: CLK-GEN 1 Command Byte 3 Register

Default Value: 00h

Attribute: Read/Write

Bit	Description	Read/Write
7-0	This register specifies the update SPI command byte 3 to the	
	CDCE62002 Clock Generator #1	R/W
	7-0: SPI command data field bit 27 to bit 20	

Register Address: SPI Base + 48h

Register Name : CLK-GEN 1 Read Data Byte 0 Register

Default Value: 00h Attribute: Read Only

Bit	Description	Read/Write
7-0	This register reflects the read back data byte 0 from the	
	CDCE62002 Clock Generator #1 for responding a host SPI Read	
	Command.	
	3-0: The SPI read back register address [3-0] for a SPI Read	RO
	Command	
	7-4: The SPI read back data bit 3 to bit 0 for a SPI Read	
	Command.	

Register Address: SPI Base + 49h

Register Name: CLK-GEN 1 Read Data Byte 1 Register

Default Value: 00h Attribute: Read Only

Bit	Description	Read/Write
7-0	This register reflects the read back data byte 1 from the	
	CDCE62002 Clock Generator #1 for responding a host SPI Read	
	Command.	RO
	7-0: The SPI read back data bit 11 to bit 4 for a SPI Read	
	Command.	

Register Address : SPI Base + 4Ah

Register Name: CLK-GEN 1 Read Data Byte 2 Register

Default Value: 00h Attribute: Read Only

Bit	Description	Read/Write
7-0	This register reflects the read back data byte 1 from the	
	CDCE62002 Clock Generator #1 for responding a host SPI Read	
	Command.	RO
	7-0: The SPI read back data bit 19 to bit 12 for a SPI Read	
	Command.	

Register Address: SPI Base + 4Bh

Register Name : CLK-GEN 1 Read Data Byte 3 Register

Default Value: 00h Attribute: Read/Write

Bit	Description	Read/Write
7-0	This register reflects the read back data byte 1 from the	
	CDCE62002 Clock Generator #1 for responding a host SPI Read	
	Command.	RO
	7-0: The SPI read back data bit 27 to bit 20 for a SPI Read	
	Command.	

Register Address : SPI Base + 4Ch ~ 4Fh

Register Name: Reserved

Register Address : **SPI Base + 50h**

Register Name : ICS 557 Clock Selection Control Register

Default Value: 00h

Bit	Description	Read/Write
0	FPGA_ICS557_SEL: This bit can be updated by the DSP software	
	to drive a high or low value on the FPGA_ICS557_SEL pin.	R/W
	0 : FPGA_ICS557_SEL drives low	
	1: FPGA_ICS557_SEL drives high	

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI.

Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other

Texas Instruments products and application solutions:

Product Applications

Amplifiers amplifier.ti.com

Data Converters dataconverter.ti.com

DSP dsp.ti.com

Clocks and Timers www.ti.com/clocks

Interface interface.ti.com

Logic logic.ti.com

Power Mgmt power.ti.com

Microcontrollers microcontroller.ti.com

RFID www.ti-rfid.com

RF/IF and ZigBee® Solutions www.ti.com/lprf

Audio www.ti.com/audio

Automotive www.ti.com/automotive Broadband www.ti.com/broadband

Digital Control www.ti.com/digitalcontrol

Medical www.ti.com/medical Military www.ti.com/military

Optical Networking www.ti.com/opticalnetwork

Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated